Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.26 | Unicode version |
Description: Theorem 19.26 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.26 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . 4 | |
2 | 1 | ralimi 2529 | . . 3 |
3 | simpr 109 | . . . 4 | |
4 | 3 | ralimi 2529 | . . 3 |
5 | 2, 4 | jca 304 | . 2 |
6 | pm3.2 138 | . . . 4 | |
7 | 6 | ral2imi 2531 | . . 3 |
8 | 7 | imp 123 | . 2 |
9 | 5, 8 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 |
This theorem depends on definitions: df-bi 116 df-ral 2449 |
This theorem is referenced by: r19.27v 2593 r19.28v 2594 r19.26-2 2595 r19.26-3 2596 ralbiim 2600 r19.27av 2601 reu8 2922 ssrab 3220 r19.28m 3498 r19.27m 3504 2ralunsn 3778 iuneq2 3882 cnvpom 5146 funco 5228 fncnv 5254 funimaexglem 5271 fnres 5304 fnopabg 5311 mpteqb 5576 eqfnfv3 5585 caoftrn 6075 iinerm 6573 ixpeq2 6678 ixpin 6689 rexanuz 10930 recvguniq 10937 cau3lem 11056 rexanre 11162 bezoutlemmo 11939 sqrt2irr 12094 pc11 12262 tgval2 12691 metequiv 13135 metequiv2 13136 mulcncflem 13230 2sqlem6 13596 bj-indind 13814 |
Copyright terms: Public domain | W3C validator |