ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.26 Unicode version

Theorem r19.26 2634
Description: Theorem 19.26 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.26  |-  ( A. x  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps ) )

Proof of Theorem r19.26
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( (
ph  /\  ps )  ->  ph )
21ralimi 2571 . . 3  |-  ( A. x  e.  A  ( ph  /\  ps )  ->  A. x  e.  A  ph )
3 simpr 110 . . . 4  |-  ( (
ph  /\  ps )  ->  ps )
43ralimi 2571 . . 3  |-  ( A. x  e.  A  ( ph  /\  ps )  ->  A. x  e.  A  ps )
52, 4jca 306 . 2  |-  ( A. x  e.  A  ( ph  /\  ps )  -> 
( A. x  e.  A  ph  /\  A. x  e.  A  ps ) )
6 pm3.2 139 . . . 4  |-  ( ph  ->  ( ps  ->  ( ph  /\  ps ) ) )
76ral2imi 2573 . . 3  |-  ( A. x  e.  A  ph  ->  ( A. x  e.  A  ps  ->  A. x  e.  A  ( ph  /\  ps )
) )
87imp 124 . 2  |-  ( ( A. x  e.  A  ph 
/\  A. x  e.  A  ps )  ->  A. x  e.  A  ( ph  /\ 
ps ) )
95, 8impbii 126 1  |-  ( A. x  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wral 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473
This theorem depends on definitions:  df-bi 117  df-ral 2491
This theorem is referenced by:  r19.27v  2635  r19.28v  2636  r19.26-2  2637  r19.26-3  2638  ralbiim  2642  r19.27av  2643  reu8  2976  ssrab  3279  r19.28m  3558  r19.27m  3564  2ralunsn  3853  iuneq2  3957  cnvpom  5244  funco  5330  fncnv  5359  funimaexglem  5376  fnres  5412  fnopabg  5419  mpteqb  5693  eqfnfv3  5702  caoftrn  6214  iinerm  6717  ixpeq2  6822  ixpin  6833  rexanuz  11414  recvguniq  11421  cau3lem  11540  rexanre  11646  bezoutlemmo  12442  sqrt2irr  12599  pc11  12769  issubg3  13643  issubg4m  13644  ringsrg  13924  tgval2  14638  metequiv  15082  metequiv2  15083  mulcncflem  15194  2sqlem6  15712  bj-indind  16067
  Copyright terms: Public domain W3C validator