| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.26 | Unicode version | ||
| Description: Theorem 19.26 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| r19.26 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . 4
| |
| 2 | 1 | ralimi 2571 |
. . 3
|
| 3 | simpr 110 |
. . . 4
| |
| 4 | 3 | ralimi 2571 |
. . 3
|
| 5 | 2, 4 | jca 306 |
. 2
|
| 6 | pm3.2 139 |
. . . 4
| |
| 7 | 6 | ral2imi 2573 |
. . 3
|
| 8 | 7 | imp 124 |
. 2
|
| 9 | 5, 8 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 |
| This theorem depends on definitions: df-bi 117 df-ral 2491 |
| This theorem is referenced by: r19.27v 2635 r19.28v 2636 r19.26-2 2637 r19.26-3 2638 ralbiim 2642 r19.27av 2643 reu8 2976 ssrab 3279 r19.28m 3558 r19.27m 3564 2ralunsn 3853 iuneq2 3957 cnvpom 5244 funco 5330 fncnv 5359 funimaexglem 5376 fnres 5412 fnopabg 5419 mpteqb 5693 eqfnfv3 5702 caoftrn 6214 iinerm 6717 ixpeq2 6822 ixpin 6833 rexanuz 11414 recvguniq 11421 cau3lem 11540 rexanre 11646 bezoutlemmo 12442 sqrt2irr 12599 pc11 12769 issubg3 13643 issubg4m 13644 ringsrg 13924 tgval2 14638 metequiv 15082 metequiv2 15083 mulcncflem 15194 2sqlem6 15712 bj-indind 16067 |
| Copyright terms: Public domain | W3C validator |