Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.26 | Unicode version |
Description: Theorem 19.26 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.26 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . 4 | |
2 | 1 | ralimi 2520 | . . 3 |
3 | simpr 109 | . . . 4 | |
4 | 3 | ralimi 2520 | . . 3 |
5 | 2, 4 | jca 304 | . 2 |
6 | pm3.2 138 | . . . 4 | |
7 | 6 | ral2imi 2522 | . . 3 |
8 | 7 | imp 123 | . 2 |
9 | 5, 8 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wral 2435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 |
This theorem depends on definitions: df-bi 116 df-ral 2440 |
This theorem is referenced by: r19.27v 2584 r19.28v 2585 r19.26-2 2586 r19.26-3 2587 ralbiim 2591 r19.27av 2592 reu8 2908 ssrab 3206 r19.28m 3483 r19.27m 3489 2ralunsn 3761 iuneq2 3865 cnvpom 5125 funco 5207 fncnv 5233 funimaexglem 5250 fnres 5283 fnopabg 5290 mpteqb 5555 eqfnfv3 5564 caoftrn 6051 iinerm 6545 ixpeq2 6650 ixpin 6661 rexanuz 10870 recvguniq 10877 cau3lem 10996 rexanre 11102 bezoutlemmo 11870 sqrt2irr 12016 tgval2 12411 metequiv 12855 metequiv2 12856 mulcncflem 12950 bj-indind 13467 |
Copyright terms: Public domain | W3C validator |