| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.26 | Unicode version | ||
| Description: Theorem 19.26 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| r19.26 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . 4
| |
| 2 | 1 | ralimi 2593 |
. . 3
|
| 3 | simpr 110 |
. . . 4
| |
| 4 | 3 | ralimi 2593 |
. . 3
|
| 5 | 2, 4 | jca 306 |
. 2
|
| 6 | pm3.2 139 |
. . . 4
| |
| 7 | 6 | ral2imi 2595 |
. . 3
|
| 8 | 7 | imp 124 |
. 2
|
| 9 | 5, 8 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 |
| This theorem depends on definitions: df-bi 117 df-ral 2513 |
| This theorem is referenced by: r19.27v 2658 r19.28v 2659 r19.26-2 2660 r19.26-3 2661 ralbiim 2665 r19.27av 2666 reu8 2999 ssrab 3302 r19.28m 3581 r19.27m 3587 2ralunsn 3877 iuneq2 3981 cnvpom 5271 funco 5358 fncnv 5387 funimaexglem 5404 fnres 5440 fnopabg 5447 mpteqb 5725 eqfnfv3 5734 caoftrn 6251 iinerm 6754 ixpeq2 6859 ixpin 6870 rexanuz 11499 recvguniq 11506 cau3lem 11625 rexanre 11731 bezoutlemmo 12527 sqrt2irr 12684 pc11 12854 issubg3 13729 issubg4m 13730 ringsrg 14010 tgval2 14725 metequiv 15169 metequiv2 15170 mulcncflem 15281 2sqlem6 15799 uspgr2wlkeq 16076 bj-indind 16295 |
| Copyright terms: Public domain | W3C validator |