| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.26 | Unicode version | ||
| Description: Theorem 19.26 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| r19.26 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . 4
| |
| 2 | 1 | ralimi 2569 |
. . 3
|
| 3 | simpr 110 |
. . . 4
| |
| 4 | 3 | ralimi 2569 |
. . 3
|
| 5 | 2, 4 | jca 306 |
. 2
|
| 6 | pm3.2 139 |
. . . 4
| |
| 7 | 6 | ral2imi 2571 |
. . 3
|
| 8 | 7 | imp 124 |
. 2
|
| 9 | 5, 8 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 |
| This theorem depends on definitions: df-bi 117 df-ral 2489 |
| This theorem is referenced by: r19.27v 2633 r19.28v 2634 r19.26-2 2635 r19.26-3 2636 ralbiim 2640 r19.27av 2641 reu8 2969 ssrab 3271 r19.28m 3550 r19.27m 3556 2ralunsn 3839 iuneq2 3943 cnvpom 5226 funco 5312 fncnv 5341 funimaexglem 5358 fnres 5394 fnopabg 5401 mpteqb 5672 eqfnfv3 5681 caoftrn 6193 iinerm 6696 ixpeq2 6801 ixpin 6812 rexanuz 11332 recvguniq 11339 cau3lem 11458 rexanre 11564 bezoutlemmo 12360 sqrt2irr 12517 pc11 12687 issubg3 13561 issubg4m 13562 ringsrg 13842 tgval2 14556 metequiv 15000 metequiv2 15001 mulcncflem 15112 2sqlem6 15630 bj-indind 15905 |
| Copyright terms: Public domain | W3C validator |