| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > r19.26 | Unicode version | ||
| Description: Theorem 19.26 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) | 
| Ref | Expression | 
|---|---|
| r19.26 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 109 | 
. . . 4
 | |
| 2 | 1 | ralimi 2560 | 
. . 3
 | 
| 3 | simpr 110 | 
. . . 4
 | |
| 4 | 3 | ralimi 2560 | 
. . 3
 | 
| 5 | 2, 4 | jca 306 | 
. 2
 | 
| 6 | pm3.2 139 | 
. . . 4
 | |
| 7 | 6 | ral2imi 2562 | 
. . 3
 | 
| 8 | 7 | imp 124 | 
. 2
 | 
| 9 | 5, 8 | impbii 126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 | 
| This theorem depends on definitions: df-bi 117 df-ral 2480 | 
| This theorem is referenced by: r19.27v 2624 r19.28v 2625 r19.26-2 2626 r19.26-3 2627 ralbiim 2631 r19.27av 2632 reu8 2960 ssrab 3261 r19.28m 3540 r19.27m 3546 2ralunsn 3828 iuneq2 3932 cnvpom 5212 funco 5298 fncnv 5324 funimaexglem 5341 fnres 5374 fnopabg 5381 mpteqb 5652 eqfnfv3 5661 caoftrn 6163 iinerm 6666 ixpeq2 6771 ixpin 6782 rexanuz 11153 recvguniq 11160 cau3lem 11279 rexanre 11385 bezoutlemmo 12173 sqrt2irr 12330 pc11 12500 issubg3 13322 issubg4m 13323 ringsrg 13603 tgval2 14287 metequiv 14731 metequiv2 14732 mulcncflem 14843 2sqlem6 15361 bj-indind 15578 | 
| Copyright terms: Public domain | W3C validator |