| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.26 | Unicode version | ||
| Description: Theorem 19.26 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| r19.26 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . 4
| |
| 2 | 1 | ralimi 2569 |
. . 3
|
| 3 | simpr 110 |
. . . 4
| |
| 4 | 3 | ralimi 2569 |
. . 3
|
| 5 | 2, 4 | jca 306 |
. 2
|
| 6 | pm3.2 139 |
. . . 4
| |
| 7 | 6 | ral2imi 2571 |
. . 3
|
| 8 | 7 | imp 124 |
. 2
|
| 9 | 5, 8 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 |
| This theorem depends on definitions: df-bi 117 df-ral 2489 |
| This theorem is referenced by: r19.27v 2633 r19.28v 2634 r19.26-2 2635 r19.26-3 2636 ralbiim 2640 r19.27av 2641 reu8 2969 ssrab 3271 r19.28m 3550 r19.27m 3556 2ralunsn 3839 iuneq2 3943 cnvpom 5225 funco 5311 fncnv 5340 funimaexglem 5357 fnres 5392 fnopabg 5399 mpteqb 5670 eqfnfv3 5679 caoftrn 6191 iinerm 6694 ixpeq2 6799 ixpin 6810 rexanuz 11299 recvguniq 11306 cau3lem 11425 rexanre 11531 bezoutlemmo 12327 sqrt2irr 12484 pc11 12654 issubg3 13528 issubg4m 13529 ringsrg 13809 tgval2 14523 metequiv 14967 metequiv2 14968 mulcncflem 15079 2sqlem6 15597 bj-indind 15872 |
| Copyright terms: Public domain | W3C validator |