ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnsg2 Unicode version

Theorem isnsg2 13095
Description: Weaken the condition of isnsg 13094 to only one side of the implication. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg.1  |-  X  =  ( Base `  G
)
isnsg.2  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
isnsg2  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) ) )
Distinct variable groups:    x, y, G   
x,  .+ , y    x, S, y    x, X, y

Proof of Theorem isnsg2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 isnsg.1 . . 3  |-  X  =  ( Base `  G
)
2 isnsg.2 . . 3  |-  .+  =  ( +g  `  G )
31, 2isnsg 13094 . 2  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. z  e.  X  ( ( x  .+  z )  e.  S  <->  ( z  .+  x )  e.  S ) ) )
4 dfbi2 388 . . . . . . 7  |-  ( ( ( x  .+  z
)  e.  S  <->  ( z  .+  x )  e.  S
)  <->  ( ( ( x  .+  z )  e.  S  ->  (
z  .+  x )  e.  S )  /\  (
( z  .+  x
)  e.  S  -> 
( x  .+  z
)  e.  S ) ) )
54ralbii 2493 . . . . . 6  |-  ( A. z  e.  X  (
( x  .+  z
)  e.  S  <->  ( z  .+  x )  e.  S
)  <->  A. z  e.  X  ( ( ( x 
.+  z )  e.  S  ->  ( z  .+  x )  e.  S
)  /\  ( (
z  .+  x )  e.  S  ->  ( x 
.+  z )  e.  S ) ) )
65ralbii 2493 . . . . 5  |-  ( A. x  e.  X  A. z  e.  X  (
( x  .+  z
)  e.  S  <->  ( z  .+  x )  e.  S
)  <->  A. x  e.  X  A. z  e.  X  ( ( ( x 
.+  z )  e.  S  ->  ( z  .+  x )  e.  S
)  /\  ( (
z  .+  x )  e.  S  ->  ( x 
.+  z )  e.  S ) ) )
7 r19.26-2 2616 . . . . 5  |-  ( A. x  e.  X  A. z  e.  X  (
( ( x  .+  z )  e.  S  ->  ( z  .+  x
)  e.  S )  /\  ( ( z 
.+  x )  e.  S  ->  ( x  .+  z )  e.  S
) )  <->  ( A. x  e.  X  A. z  e.  X  (
( x  .+  z
)  e.  S  -> 
( z  .+  x
)  e.  S )  /\  A. x  e.  X  A. z  e.  X  ( ( z 
.+  x )  e.  S  ->  ( x  .+  z )  e.  S
) ) )
86, 7bitri 184 . . . 4  |-  ( A. x  e.  X  A. z  e.  X  (
( x  .+  z
)  e.  S  <->  ( z  .+  x )  e.  S
)  <->  ( A. x  e.  X  A. z  e.  X  ( (
x  .+  z )  e.  S  ->  ( z 
.+  x )  e.  S )  /\  A. x  e.  X  A. z  e.  X  (
( z  .+  x
)  e.  S  -> 
( x  .+  z
)  e.  S ) ) )
9 oveq2 5896 . . . . . . . . 9  |-  ( z  =  y  ->  (
x  .+  z )  =  ( x  .+  y ) )
109eleq1d 2256 . . . . . . . 8  |-  ( z  =  y  ->  (
( x  .+  z
)  e.  S  <->  ( x  .+  y )  e.  S
) )
11 oveq1 5895 . . . . . . . . 9  |-  ( z  =  y  ->  (
z  .+  x )  =  ( y  .+  x ) )
1211eleq1d 2256 . . . . . . . 8  |-  ( z  =  y  ->  (
( z  .+  x
)  e.  S  <->  ( y  .+  x )  e.  S
) )
1310, 12imbi12d 234 . . . . . . 7  |-  ( z  =  y  ->  (
( ( x  .+  z )  e.  S  ->  ( z  .+  x
)  e.  S )  <-> 
( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) ) )
1413cbvralvw 2719 . . . . . 6  |-  ( A. z  e.  X  (
( x  .+  z
)  e.  S  -> 
( z  .+  x
)  e.  S )  <->  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) )
1514ralbii 2493 . . . . 5  |-  ( A. x  e.  X  A. z  e.  X  (
( x  .+  z
)  e.  S  -> 
( z  .+  x
)  e.  S )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) )
16 ralcom 2650 . . . . . 6  |-  ( A. x  e.  X  A. z  e.  X  (
( z  .+  x
)  e.  S  -> 
( x  .+  z
)  e.  S )  <->  A. z  e.  X  A. x  e.  X  ( ( z  .+  x )  e.  S  ->  ( x  .+  z
)  e.  S ) )
17 oveq2 5896 . . . . . . . . . 10  |-  ( x  =  y  ->  (
z  .+  x )  =  ( z  .+  y ) )
1817eleq1d 2256 . . . . . . . . 9  |-  ( x  =  y  ->  (
( z  .+  x
)  e.  S  <->  ( z  .+  y )  e.  S
) )
19 oveq1 5895 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  .+  z )  =  ( y  .+  z ) )
2019eleq1d 2256 . . . . . . . . 9  |-  ( x  =  y  ->  (
( x  .+  z
)  e.  S  <->  ( y  .+  z )  e.  S
) )
2118, 20imbi12d 234 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( z  .+  x )  e.  S  ->  ( x  .+  z
)  e.  S )  <-> 
( ( z  .+  y )  e.  S  ->  ( y  .+  z
)  e.  S ) ) )
2221cbvralvw 2719 . . . . . . 7  |-  ( A. x  e.  X  (
( z  .+  x
)  e.  S  -> 
( x  .+  z
)  e.  S )  <->  A. y  e.  X  ( ( z  .+  y )  e.  S  ->  ( y  .+  z
)  e.  S ) )
2322ralbii 2493 . . . . . 6  |-  ( A. z  e.  X  A. x  e.  X  (
( z  .+  x
)  e.  S  -> 
( x  .+  z
)  e.  S )  <->  A. z  e.  X  A. y  e.  X  ( ( z  .+  y )  e.  S  ->  ( y  .+  z
)  e.  S ) )
24 oveq1 5895 . . . . . . . . . 10  |-  ( z  =  x  ->  (
z  .+  y )  =  ( x  .+  y ) )
2524eleq1d 2256 . . . . . . . . 9  |-  ( z  =  x  ->  (
( z  .+  y
)  e.  S  <->  ( x  .+  y )  e.  S
) )
26 oveq2 5896 . . . . . . . . . 10  |-  ( z  =  x  ->  (
y  .+  z )  =  ( y  .+  x ) )
2726eleq1d 2256 . . . . . . . . 9  |-  ( z  =  x  ->  (
( y  .+  z
)  e.  S  <->  ( y  .+  x )  e.  S
) )
2825, 27imbi12d 234 . . . . . . . 8  |-  ( z  =  x  ->  (
( ( z  .+  y )  e.  S  ->  ( y  .+  z
)  e.  S )  <-> 
( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) ) )
2928ralbidv 2487 . . . . . . 7  |-  ( z  =  x  ->  ( A. y  e.  X  ( ( z  .+  y )  e.  S  ->  ( y  .+  z
)  e.  S )  <->  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) ) )
3029cbvralvw 2719 . . . . . 6  |-  ( A. z  e.  X  A. y  e.  X  (
( z  .+  y
)  e.  S  -> 
( y  .+  z
)  e.  S )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) )
3116, 23, 303bitri 206 . . . . 5  |-  ( A. x  e.  X  A. z  e.  X  (
( z  .+  x
)  e.  S  -> 
( x  .+  z
)  e.  S )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) )
3215, 31anbi12i 460 . . . 4  |-  ( ( A. x  e.  X  A. z  e.  X  ( ( x  .+  z )  e.  S  ->  ( z  .+  x
)  e.  S )  /\  A. x  e.  X  A. z  e.  X  ( ( z 
.+  x )  e.  S  ->  ( x  .+  z )  e.  S
) )  <->  ( A. x  e.  X  A. y  e.  X  (
( x  .+  y
)  e.  S  -> 
( y  .+  x
)  e.  S )  /\  A. x  e.  X  A. y  e.  X  ( ( x 
.+  y )  e.  S  ->  ( y  .+  x )  e.  S
) ) )
33 anidm 396 . . . 4  |-  ( ( A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S )  /\  A. x  e.  X  A. y  e.  X  ( ( x 
.+  y )  e.  S  ->  ( y  .+  x )  e.  S
) )  <->  A. x  e.  X  A. y  e.  X  ( (
x  .+  y )  e.  S  ->  ( y 
.+  x )  e.  S ) )
348, 32, 333bitri 206 . . 3  |-  ( A. x  e.  X  A. z  e.  X  (
( x  .+  z
)  e.  S  <->  ( z  .+  x )  e.  S
)  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) )
3534anbi2i 457 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. z  e.  X  (
( x  .+  z
)  e.  S  <->  ( z  .+  x )  e.  S
) )  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) ) )
363, 35bitri 184 1  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158   A.wral 2465   ` cfv 5228  (class class class)co 5888   Basecbs 12476   +g cplusg 12551  SubGrpcsubg 13059  NrmSGrpcnsg 13060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-cnex 7916  ax-resscn 7917  ax-1re 7919  ax-addrcl 7922
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-fv 5236  df-ov 5891  df-inn 8934  df-2 8992  df-ndx 12479  df-slot 12480  df-base 12482  df-plusg 12564  df-subg 13062  df-nsg 13063
This theorem is referenced by:  isnsg3  13099  subrngringnsg  13425
  Copyright terms: Public domain W3C validator