| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isnsg2 | Unicode version | ||
| Description: Weaken the condition of isnsg 13653 to only one side of the implication. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| isnsg.1 |
|
| isnsg.2 |
|
| Ref | Expression |
|---|---|
| isnsg2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnsg.1 |
. . 3
| |
| 2 | isnsg.2 |
. . 3
| |
| 3 | 1, 2 | isnsg 13653 |
. 2
|
| 4 | dfbi2 388 |
. . . . . . 7
| |
| 5 | 4 | ralbii 2514 |
. . . . . 6
|
| 6 | 5 | ralbii 2514 |
. . . . 5
|
| 7 | r19.26-2 2637 |
. . . . 5
| |
| 8 | 6, 7 | bitri 184 |
. . . 4
|
| 9 | oveq2 5975 |
. . . . . . . . 9
| |
| 10 | 9 | eleq1d 2276 |
. . . . . . . 8
|
| 11 | oveq1 5974 |
. . . . . . . . 9
| |
| 12 | 11 | eleq1d 2276 |
. . . . . . . 8
|
| 13 | 10, 12 | imbi12d 234 |
. . . . . . 7
|
| 14 | 13 | cbvralvw 2746 |
. . . . . 6
|
| 15 | 14 | ralbii 2514 |
. . . . 5
|
| 16 | ralcom 2671 |
. . . . . 6
| |
| 17 | oveq2 5975 |
. . . . . . . . . 10
| |
| 18 | 17 | eleq1d 2276 |
. . . . . . . . 9
|
| 19 | oveq1 5974 |
. . . . . . . . . 10
| |
| 20 | 19 | eleq1d 2276 |
. . . . . . . . 9
|
| 21 | 18, 20 | imbi12d 234 |
. . . . . . . 8
|
| 22 | 21 | cbvralvw 2746 |
. . . . . . 7
|
| 23 | 22 | ralbii 2514 |
. . . . . 6
|
| 24 | oveq1 5974 |
. . . . . . . . . 10
| |
| 25 | 24 | eleq1d 2276 |
. . . . . . . . 9
|
| 26 | oveq2 5975 |
. . . . . . . . . 10
| |
| 27 | 26 | eleq1d 2276 |
. . . . . . . . 9
|
| 28 | 25, 27 | imbi12d 234 |
. . . . . . . 8
|
| 29 | 28 | ralbidv 2508 |
. . . . . . 7
|
| 30 | 29 | cbvralvw 2746 |
. . . . . 6
|
| 31 | 16, 23, 30 | 3bitri 206 |
. . . . 5
|
| 32 | 15, 31 | anbi12i 460 |
. . . 4
|
| 33 | anidm 396 |
. . . 4
| |
| 34 | 8, 32, 33 | 3bitri 206 |
. . 3
|
| 35 | 34 | anbi2i 457 |
. 2
|
| 36 | 3, 35 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-subg 13621 df-nsg 13622 |
| This theorem is referenced by: isnsg3 13658 subrngringnsg 14082 |
| Copyright terms: Public domain | W3C validator |