| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isnsg2 | Unicode version | ||
| Description: Weaken the condition of isnsg 13332 to only one side of the implication. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| isnsg.1 |
|
| isnsg.2 |
|
| Ref | Expression |
|---|---|
| isnsg2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnsg.1 |
. . 3
| |
| 2 | isnsg.2 |
. . 3
| |
| 3 | 1, 2 | isnsg 13332 |
. 2
|
| 4 | dfbi2 388 |
. . . . . . 7
| |
| 5 | 4 | ralbii 2503 |
. . . . . 6
|
| 6 | 5 | ralbii 2503 |
. . . . 5
|
| 7 | r19.26-2 2626 |
. . . . 5
| |
| 8 | 6, 7 | bitri 184 |
. . . 4
|
| 9 | oveq2 5930 |
. . . . . . . . 9
| |
| 10 | 9 | eleq1d 2265 |
. . . . . . . 8
|
| 11 | oveq1 5929 |
. . . . . . . . 9
| |
| 12 | 11 | eleq1d 2265 |
. . . . . . . 8
|
| 13 | 10, 12 | imbi12d 234 |
. . . . . . 7
|
| 14 | 13 | cbvralvw 2733 |
. . . . . 6
|
| 15 | 14 | ralbii 2503 |
. . . . 5
|
| 16 | ralcom 2660 |
. . . . . 6
| |
| 17 | oveq2 5930 |
. . . . . . . . . 10
| |
| 18 | 17 | eleq1d 2265 |
. . . . . . . . 9
|
| 19 | oveq1 5929 |
. . . . . . . . . 10
| |
| 20 | 19 | eleq1d 2265 |
. . . . . . . . 9
|
| 21 | 18, 20 | imbi12d 234 |
. . . . . . . 8
|
| 22 | 21 | cbvralvw 2733 |
. . . . . . 7
|
| 23 | 22 | ralbii 2503 |
. . . . . 6
|
| 24 | oveq1 5929 |
. . . . . . . . . 10
| |
| 25 | 24 | eleq1d 2265 |
. . . . . . . . 9
|
| 26 | oveq2 5930 |
. . . . . . . . . 10
| |
| 27 | 26 | eleq1d 2265 |
. . . . . . . . 9
|
| 28 | 25, 27 | imbi12d 234 |
. . . . . . . 8
|
| 29 | 28 | ralbidv 2497 |
. . . . . . 7
|
| 30 | 29 | cbvralvw 2733 |
. . . . . 6
|
| 31 | 16, 23, 30 | 3bitri 206 |
. . . . 5
|
| 32 | 15, 31 | anbi12i 460 |
. . . 4
|
| 33 | anidm 396 |
. . . 4
| |
| 34 | 8, 32, 33 | 3bitri 206 |
. . 3
|
| 35 | 34 | anbi2i 457 |
. 2
|
| 36 | 3, 35 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-subg 13300 df-nsg 13301 |
| This theorem is referenced by: isnsg3 13337 subrngringnsg 13761 |
| Copyright terms: Public domain | W3C validator |