ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnsg2 Unicode version

Theorem isnsg2 13539
Description: Weaken the condition of isnsg 13538 to only one side of the implication. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg.1  |-  X  =  ( Base `  G
)
isnsg.2  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
isnsg2  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) ) )
Distinct variable groups:    x, y, G   
x,  .+ , y    x, S, y    x, X, y

Proof of Theorem isnsg2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 isnsg.1 . . 3  |-  X  =  ( Base `  G
)
2 isnsg.2 . . 3  |-  .+  =  ( +g  `  G )
31, 2isnsg 13538 . 2  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. z  e.  X  ( ( x  .+  z )  e.  S  <->  ( z  .+  x )  e.  S ) ) )
4 dfbi2 388 . . . . . . 7  |-  ( ( ( x  .+  z
)  e.  S  <->  ( z  .+  x )  e.  S
)  <->  ( ( ( x  .+  z )  e.  S  ->  (
z  .+  x )  e.  S )  /\  (
( z  .+  x
)  e.  S  -> 
( x  .+  z
)  e.  S ) ) )
54ralbii 2512 . . . . . 6  |-  ( A. z  e.  X  (
( x  .+  z
)  e.  S  <->  ( z  .+  x )  e.  S
)  <->  A. z  e.  X  ( ( ( x 
.+  z )  e.  S  ->  ( z  .+  x )  e.  S
)  /\  ( (
z  .+  x )  e.  S  ->  ( x 
.+  z )  e.  S ) ) )
65ralbii 2512 . . . . 5  |-  ( A. x  e.  X  A. z  e.  X  (
( x  .+  z
)  e.  S  <->  ( z  .+  x )  e.  S
)  <->  A. x  e.  X  A. z  e.  X  ( ( ( x 
.+  z )  e.  S  ->  ( z  .+  x )  e.  S
)  /\  ( (
z  .+  x )  e.  S  ->  ( x 
.+  z )  e.  S ) ) )
7 r19.26-2 2635 . . . . 5  |-  ( A. x  e.  X  A. z  e.  X  (
( ( x  .+  z )  e.  S  ->  ( z  .+  x
)  e.  S )  /\  ( ( z 
.+  x )  e.  S  ->  ( x  .+  z )  e.  S
) )  <->  ( A. x  e.  X  A. z  e.  X  (
( x  .+  z
)  e.  S  -> 
( z  .+  x
)  e.  S )  /\  A. x  e.  X  A. z  e.  X  ( ( z 
.+  x )  e.  S  ->  ( x  .+  z )  e.  S
) ) )
86, 7bitri 184 . . . 4  |-  ( A. x  e.  X  A. z  e.  X  (
( x  .+  z
)  e.  S  <->  ( z  .+  x )  e.  S
)  <->  ( A. x  e.  X  A. z  e.  X  ( (
x  .+  z )  e.  S  ->  ( z 
.+  x )  e.  S )  /\  A. x  e.  X  A. z  e.  X  (
( z  .+  x
)  e.  S  -> 
( x  .+  z
)  e.  S ) ) )
9 oveq2 5952 . . . . . . . . 9  |-  ( z  =  y  ->  (
x  .+  z )  =  ( x  .+  y ) )
109eleq1d 2274 . . . . . . . 8  |-  ( z  =  y  ->  (
( x  .+  z
)  e.  S  <->  ( x  .+  y )  e.  S
) )
11 oveq1 5951 . . . . . . . . 9  |-  ( z  =  y  ->  (
z  .+  x )  =  ( y  .+  x ) )
1211eleq1d 2274 . . . . . . . 8  |-  ( z  =  y  ->  (
( z  .+  x
)  e.  S  <->  ( y  .+  x )  e.  S
) )
1310, 12imbi12d 234 . . . . . . 7  |-  ( z  =  y  ->  (
( ( x  .+  z )  e.  S  ->  ( z  .+  x
)  e.  S )  <-> 
( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) ) )
1413cbvralvw 2742 . . . . . 6  |-  ( A. z  e.  X  (
( x  .+  z
)  e.  S  -> 
( z  .+  x
)  e.  S )  <->  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) )
1514ralbii 2512 . . . . 5  |-  ( A. x  e.  X  A. z  e.  X  (
( x  .+  z
)  e.  S  -> 
( z  .+  x
)  e.  S )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) )
16 ralcom 2669 . . . . . 6  |-  ( A. x  e.  X  A. z  e.  X  (
( z  .+  x
)  e.  S  -> 
( x  .+  z
)  e.  S )  <->  A. z  e.  X  A. x  e.  X  ( ( z  .+  x )  e.  S  ->  ( x  .+  z
)  e.  S ) )
17 oveq2 5952 . . . . . . . . . 10  |-  ( x  =  y  ->  (
z  .+  x )  =  ( z  .+  y ) )
1817eleq1d 2274 . . . . . . . . 9  |-  ( x  =  y  ->  (
( z  .+  x
)  e.  S  <->  ( z  .+  y )  e.  S
) )
19 oveq1 5951 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  .+  z )  =  ( y  .+  z ) )
2019eleq1d 2274 . . . . . . . . 9  |-  ( x  =  y  ->  (
( x  .+  z
)  e.  S  <->  ( y  .+  z )  e.  S
) )
2118, 20imbi12d 234 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( z  .+  x )  e.  S  ->  ( x  .+  z
)  e.  S )  <-> 
( ( z  .+  y )  e.  S  ->  ( y  .+  z
)  e.  S ) ) )
2221cbvralvw 2742 . . . . . . 7  |-  ( A. x  e.  X  (
( z  .+  x
)  e.  S  -> 
( x  .+  z
)  e.  S )  <->  A. y  e.  X  ( ( z  .+  y )  e.  S  ->  ( y  .+  z
)  e.  S ) )
2322ralbii 2512 . . . . . 6  |-  ( A. z  e.  X  A. x  e.  X  (
( z  .+  x
)  e.  S  -> 
( x  .+  z
)  e.  S )  <->  A. z  e.  X  A. y  e.  X  ( ( z  .+  y )  e.  S  ->  ( y  .+  z
)  e.  S ) )
24 oveq1 5951 . . . . . . . . . 10  |-  ( z  =  x  ->  (
z  .+  y )  =  ( x  .+  y ) )
2524eleq1d 2274 . . . . . . . . 9  |-  ( z  =  x  ->  (
( z  .+  y
)  e.  S  <->  ( x  .+  y )  e.  S
) )
26 oveq2 5952 . . . . . . . . . 10  |-  ( z  =  x  ->  (
y  .+  z )  =  ( y  .+  x ) )
2726eleq1d 2274 . . . . . . . . 9  |-  ( z  =  x  ->  (
( y  .+  z
)  e.  S  <->  ( y  .+  x )  e.  S
) )
2825, 27imbi12d 234 . . . . . . . 8  |-  ( z  =  x  ->  (
( ( z  .+  y )  e.  S  ->  ( y  .+  z
)  e.  S )  <-> 
( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) ) )
2928ralbidv 2506 . . . . . . 7  |-  ( z  =  x  ->  ( A. y  e.  X  ( ( z  .+  y )  e.  S  ->  ( y  .+  z
)  e.  S )  <->  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) ) )
3029cbvralvw 2742 . . . . . 6  |-  ( A. z  e.  X  A. y  e.  X  (
( z  .+  y
)  e.  S  -> 
( y  .+  z
)  e.  S )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) )
3116, 23, 303bitri 206 . . . . 5  |-  ( A. x  e.  X  A. z  e.  X  (
( z  .+  x
)  e.  S  -> 
( x  .+  z
)  e.  S )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) )
3215, 31anbi12i 460 . . . 4  |-  ( ( A. x  e.  X  A. z  e.  X  ( ( x  .+  z )  e.  S  ->  ( z  .+  x
)  e.  S )  /\  A. x  e.  X  A. z  e.  X  ( ( z 
.+  x )  e.  S  ->  ( x  .+  z )  e.  S
) )  <->  ( A. x  e.  X  A. y  e.  X  (
( x  .+  y
)  e.  S  -> 
( y  .+  x
)  e.  S )  /\  A. x  e.  X  A. y  e.  X  ( ( x 
.+  y )  e.  S  ->  ( y  .+  x )  e.  S
) ) )
33 anidm 396 . . . 4  |-  ( ( A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S )  /\  A. x  e.  X  A. y  e.  X  ( ( x 
.+  y )  e.  S  ->  ( y  .+  x )  e.  S
) )  <->  A. x  e.  X  A. y  e.  X  ( (
x  .+  y )  e.  S  ->  ( y 
.+  x )  e.  S ) )
348, 32, 333bitri 206 . . 3  |-  ( A. x  e.  X  A. z  e.  X  (
( x  .+  z
)  e.  S  <->  ( z  .+  x )  e.  S
)  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) )
3534anbi2i 457 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. z  e.  X  (
( x  .+  z
)  e.  S  <->  ( z  .+  x )  e.  S
) )  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) ) )
363, 35bitri 184 1  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909  SubGrpcsubg 13503  NrmSGrpcnsg 13504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-ov 5947  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-subg 13506  df-nsg 13507
This theorem is referenced by:  isnsg3  13543  subrngringnsg  13967
  Copyright terms: Public domain W3C validator