ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.27mv Unicode version

Theorem r19.27mv 3557
Description: Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.)
Assertion
Ref Expression
r19.27mv  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  ps ) ) )
Distinct variable groups:    x, A    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem r19.27mv
StepHypRef Expression
1 nfv 1551 . 2  |-  F/ x ps
21r19.27m 3556 1  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1515    e. wcel 2176   A.wral 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-cleq 2198  df-clel 2201  df-ral 2489
This theorem is referenced by:  bezoutlembi  12326
  Copyright terms: Public domain W3C validator