ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.27mv Unicode version

Theorem r19.27mv 3547
Description: Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.)
Assertion
Ref Expression
r19.27mv  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  ps ) ) )
Distinct variable groups:    x, A    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem r19.27mv
StepHypRef Expression
1 nfv 1542 . 2  |-  F/ x ps
21r19.27m 3546 1  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1506    e. wcel 2167   A.wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-cleq 2189  df-clel 2192  df-ral 2480
This theorem is referenced by:  bezoutlembi  12172
  Copyright terms: Public domain W3C validator