ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.27mv Unicode version

Theorem r19.27mv 3490
Description: Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.)
Assertion
Ref Expression
r19.27mv  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  ps ) ) )
Distinct variable groups:    x, A    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem r19.27mv
StepHypRef Expression
1 nfv 1508 . 2  |-  F/ x ps
21r19.27m 3489 1  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   E.wex 1472    e. wcel 2128   A.wral 2435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-cleq 2150  df-clel 2153  df-ral 2440
This theorem is referenced by:  bezoutlembi  11893
  Copyright terms: Public domain W3C validator