ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rzal Unicode version

Theorem rzal 3506
Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
rzal  |-  ( A  =  (/)  ->  A. x  e.  A  ph )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem rzal
StepHypRef Expression
1 ne0i 3415 . . . 4  |-  ( x  e.  A  ->  A  =/=  (/) )
21necon2bi 2391 . . 3  |-  ( A  =  (/)  ->  -.  x  e.  A )
32pm2.21d 609 . 2  |-  ( A  =  (/)  ->  ( x  e.  A  ->  ph )
)
43ralrimiv 2538 1  |-  ( A  =  (/)  ->  A. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   A.wral 2444   (/)c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-v 2728  df-dif 3118  df-nul 3410
This theorem is referenced by:  ralf0  3512  fiubm  10741  mgm0  12600
  Copyright terms: Public domain W3C validator