ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rzal Unicode version

Theorem rzal 3557
Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
rzal  |-  ( A  =  (/)  ->  A. x  e.  A  ph )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem rzal
StepHypRef Expression
1 ne0i 3466 . . . 4  |-  ( x  e.  A  ->  A  =/=  (/) )
21necon2bi 2430 . . 3  |-  ( A  =  (/)  ->  -.  x  e.  A )
32pm2.21d 620 . 2  |-  ( A  =  (/)  ->  ( x  e.  A  ->  ph )
)
43ralrimiv 2577 1  |-  ( A  =  (/)  ->  A. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   A.wral 2483   (/)c0 3459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-v 2773  df-dif 3167  df-nul 3460
This theorem is referenced by:  ralf0  3562  fiubm  10971  mgm0  13172  sgrp0  13213
  Copyright terms: Public domain W3C validator