ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rzal Unicode version

Theorem rzal 3512
Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
rzal  |-  ( A  =  (/)  ->  A. x  e.  A  ph )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem rzal
StepHypRef Expression
1 ne0i 3421 . . . 4  |-  ( x  e.  A  ->  A  =/=  (/) )
21necon2bi 2395 . . 3  |-  ( A  =  (/)  ->  -.  x  e.  A )
32pm2.21d 614 . 2  |-  ( A  =  (/)  ->  ( x  e.  A  ->  ph )
)
43ralrimiv 2542 1  |-  ( A  =  (/)  ->  A. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   A.wral 2448   (/)c0 3414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-v 2732  df-dif 3123  df-nul 3415
This theorem is referenced by:  ralf0  3518  fiubm  10763  mgm0  12623  sgrp0  12650
  Copyright terms: Public domain W3C validator