HomeHome Intuitionistic Logic Explorer
Theorem List (p. 36 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3501-3600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremne0ii 3501 If a class has elements, then it is nonempty. Inference associated with ne0i 3498. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  A  e.  B   =>    |-  B  =/=  (/)
 
Theoremvn0 3502 The universal class is not equal to the empty set. (Contributed by NM, 11-Sep-2008.)
 |- 
 _V  =/=  (/)
 
Theoremvn0m 3503 The universal class is inhabited. (Contributed by Jim Kingdon, 17-Dec-2018.)
 |- 
 E. x  x  e. 
 _V
 
Theoremn0rf 3504 An inhabited class is nonempty. Following the Definition of [Bauer], p. 483, we call a class  A nonempty if  A  =/=  (/) and inhabited if it has at least one element. In classical logic these two concepts are equivalent, for example see Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of n0r 3505 requires only that  x not be free in, rather than not occur in,  A. (Contributed by Jim Kingdon, 31-Jul-2018.)
 |-  F/_ x A   =>    |-  ( E. x  x  e.  A  ->  A  =/= 
 (/) )
 
Theoremn0r 3505* An inhabited class is nonempty. See n0rf 3504 for more discussion. (Contributed by Jim Kingdon, 31-Jul-2018.)
 |-  ( E. x  x  e.  A  ->  A  =/= 
 (/) )
 
Theoremneq0r 3506* An inhabited class is nonempty. See n0rf 3504 for more discussion. (Contributed by Jim Kingdon, 31-Jul-2018.)
 |-  ( E. x  x  e.  A  ->  -.  A  =  (/) )
 
Theoremreximdva0m 3507* Restricted existence deduced from inhabited class. (Contributed by Jim Kingdon, 31-Jul-2018.)
 |-  ( ( ph  /\  x  e.  A )  ->  ps )   =>    |-  (
 ( ph  /\  E. x  x  e.  A )  ->  E. x  e.  A  ps )
 
Theoremn0mmoeu 3508* A case of equivalence of "at most one" and "only one". If a class is inhabited, that class having at most one element is equivalent to it having only one element. (Contributed by Jim Kingdon, 31-Jul-2018.)
 |-  ( E. x  x  e.  A  ->  ( E* x  x  e.  A 
 <->  E! x  x  e.  A ) )
 
Theoremrex0 3509 Vacuous existential quantification is false. (Contributed by NM, 15-Oct-2003.)
 |- 
 -.  E. x  e.  (/)  ph
 
Theoremeq0 3510* The empty set has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.)
 |-  ( A  =  (/)  <->  A. x  -.  x  e.  A )
 
Theoremeqv 3511* The universe contains every set. (Contributed by NM, 11-Sep-2006.)
 |-  ( A  =  _V  <->  A. x  x  e.  A )
 
Theoremnotm0 3512* A class is not inhabited if and only if it is empty. (Contributed by Jim Kingdon, 1-Jul-2022.)
 |-  ( -.  E. x  x  e.  A  <->  A  =  (/) )
 
Theoremnel0 3513* From the general negation of membership in  A, infer that  A is the empty set. (Contributed by BJ, 6-Oct-2018.)
 |- 
 -.  x  e.  A   =>    |-  A  =  (/)
 
Theorem0el 3514* Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004.)
 |-  ( (/)  e.  A  <->  E. x  e.  A  A. y  -.  y  e.  x )
 
Theoremabvor0dc 3515* The class builder of a decidable proposition not containing the abstraction variable is either the universal class or the empty set. (Contributed by Jim Kingdon, 1-Aug-2018.)
 |-  (DECID 
 ph  ->  ( { x  |  ph }  =  _V  \/  { x  |  ph }  =  (/) ) )
 
Theoremabn0r 3516 Nonempty class abstraction. (Contributed by Jim Kingdon, 1-Aug-2018.)
 |-  ( E. x ph  ->  { x  |  ph }  =/=  (/) )
 
Theoremabn0m 3517* Inhabited class abstraction. (Contributed by Jim Kingdon, 8-Jul-2022.)
 |-  ( E. y  y  e.  { x  |  ph
 } 
 <-> 
 E. x ph )
 
Theoremrabn0r 3518 Nonempty restricted class abstraction. (Contributed by Jim Kingdon, 1-Aug-2018.)
 |-  ( E. x  e.  A  ph  ->  { x  e.  A  |  ph }  =/=  (/) )
 
Theoremrabn0m 3519* Inhabited restricted class abstraction. (Contributed by Jim Kingdon, 18-Sep-2018.)
 |-  ( E. y  y  e.  { x  e.  A  |  ph }  <->  E. x  e.  A  ph )
 
Theoremrab0 3520 Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |- 
 { x  e.  (/)  |  ph }  =  (/)
 
Theoremrabeq0 3521 Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.)
 |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. x  e.  A  -.  ph )
 
Theoremabeq0 3522 Condition for a class abstraction to be empty. (Contributed by Jim Kingdon, 12-Aug-2018.)
 |-  ( { x  |  ph
 }  =  (/)  <->  A. x  -.  ph )
 
Theoremrabxmdc 3523* Law of excluded middle given decidability, in terms of restricted class abstractions. (Contributed by Jim Kingdon, 2-Aug-2018.)
 |-  ( A. xDECID  ph  ->  A  =  ( { x  e.  A  |  ph }  u.  { x  e.  A  |  -.  ph } ) )
 
Theoremrabnc 3524* Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
 |-  ( { x  e.  A  |  ph }  i^i  { x  e.  A  |  -.  ph } )  =  (/)
 
Theoremun0 3525 The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  u.  (/) )  =  A
 
Theoremin0 3526 The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  i^i  (/) )  =  (/)
 
Theorem0in 3527 The intersection of the empty set with a class is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( (/)  i^i  A )  =  (/)
 
Theoreminv1 3528 The intersection of a class with the universal class is itself. Exercise 4.10(k) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.)
 |-  ( A  i^i  _V )  =  A
 
Theoremunv 3529 The union of a class with the universal class is the universal class. Exercise 4.10(l) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.)
 |-  ( A  u.  _V )  =  _V
 
Theorem0ss 3530 The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.)
 |-  (/)  C_  A
 
Theoremss0b 3531 Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.)
 |-  ( A  C_  (/)  <->  A  =  (/) )
 
Theoremss0 3532 Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.)
 |-  ( A  C_  (/)  ->  A  =  (/) )
 
Theoremsseq0 3533 A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( A  C_  B  /\  B  =  (/) )  ->  A  =  (/) )
 
Theoremssn0 3534 A class with a nonempty subclass is nonempty. (Contributed by NM, 17-Feb-2007.)
 |-  ( ( A  C_  B  /\  A  =/=  (/) )  ->  B  =/=  (/) )
 
Theoremabf 3535 A class builder with a false argument is empty. (Contributed by NM, 20-Jan-2012.)
 |- 
 -.  ph   =>    |- 
 { x  |  ph }  =  (/)
 
Theoremeq0rdv 3536* Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014.)
 |-  ( ph  ->  -.  x  e.  A )   =>    |-  ( ph  ->  A  =  (/) )
 
Theoremcsbprc 3537 The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.)
 |-  ( -.  A  e.  _V 
 ->  [_ A  /  x ]_ B  =  (/) )
 
Theoremun00 3538 Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004.)
 |-  ( ( A  =  (/)  /\  B  =  (/) )  <->  ( A  u.  B )  =  (/) )
 
Theoremvss 3539 Only the universal class has the universal class as a subclass. (Contributed by NM, 17-Sep-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( _V  C_  A  <->  A  =  _V )
 
Theoremdisj 3540* Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.)
 |-  ( ( A  i^i  B )  =  (/)  <->  A. x  e.  A  -.  x  e.  B )
 
Theoremdisjr 3541* Two ways of saying that two classes are disjoint. (Contributed by Jeff Madsen, 19-Jun-2011.)
 |-  ( ( A  i^i  B )  =  (/)  <->  A. x  e.  B  -.  x  e.  A )
 
Theoremdisj1 3542* Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 19-Aug-1993.)
 |-  ( ( A  i^i  B )  =  (/)  <->  A. x ( x  e.  A  ->  -.  x  e.  B ) )
 
Theoremreldisj 3543 Two ways of saying that two classes are disjoint, using the complement of  B relative to a universe  C. (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  C_  C  ->  ( ( A  i^i  B )  =  (/)  <->  A  C_  ( C 
 \  B ) ) )
 
Theoremdisj3 3544 Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998.)
 |-  ( ( A  i^i  B )  =  (/)  <->  A  =  ( A  \  B ) )
 
Theoremdisjne 3545 Members of disjoint sets are not equal. (Contributed by NM, 28-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( ( A  i^i  B )  =  (/)  /\  C  e.  A  /\  D  e.  B ) 
 ->  C  =/=  D )
 
Theoremdisjel 3546 A set can't belong to both members of disjoint classes. (Contributed by NM, 28-Feb-2015.)
 |-  ( ( ( A  i^i  B )  =  (/)  /\  C  e.  A )  ->  -.  C  e.  B )
 
Theoremdisj2 3547 Two ways of saying that two classes are disjoint. (Contributed by NM, 17-May-1998.)
 |-  ( ( A  i^i  B )  =  (/)  <->  A  C_  ( _V  \  B ) )
 
Theoremssdisj 3548 Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.)
 |-  ( ( A  C_  B  /\  ( B  i^i  C )  =  (/) )  ->  ( A  i^i  C )  =  (/) )
 
Theoremundisj1 3549 The union of disjoint classes is disjoint. (Contributed by NM, 26-Sep-2004.)
 |-  ( ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  C )  =  (/) )  <->  ( ( A  u.  B )  i^i 
 C )  =  (/) )
 
Theoremundisj2 3550 The union of disjoint classes is disjoint. (Contributed by NM, 13-Sep-2004.)
 |-  ( ( ( A  i^i  B )  =  (/)  /\  ( A  i^i  C )  =  (/) )  <->  ( A  i^i  ( B  u.  C ) )  =  (/) )
 
Theoremssindif0im 3551 Subclass implies empty intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.)
 |-  ( A  C_  B  ->  ( A  i^i  ( _V  \  B ) )  =  (/) )
 
Theoreminelcm 3552 The intersection of classes with a common member is nonempty. (Contributed by NM, 7-Apr-1994.)
 |-  ( ( A  e.  B  /\  A  e.  C )  ->  ( B  i^i  C )  =/=  (/) )
 
Theoremminel 3553 A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.)
 |-  ( ( A  e.  B  /\  ( C  i^i  B )  =  (/) )  ->  -.  A  e.  C )
 
Theoremundif4 3554 Distribute union over difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( A  i^i  C )  =  (/)  ->  ( A  u.  ( B  \  C ) )  =  ( ( A  u.  B )  \  C ) )
 
Theoremdisjssun 3555 Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( A  i^i  B )  =  (/)  ->  ( A  C_  ( B  u.  C )  <->  A  C_  C ) )
 
Theoremssdif0im 3556 Subclass implies empty difference. One direction of Exercise 7 of [TakeutiZaring] p. 22. In classical logic this would be an equivalence. (Contributed by Jim Kingdon, 2-Aug-2018.)
 |-  ( A  C_  B  ->  ( A  \  B )  =  (/) )
 
Theoremvdif0im 3557 Universal class equality in terms of empty difference. (Contributed by Jim Kingdon, 3-Aug-2018.)
 |-  ( A  =  _V  ->  ( _V  \  A )  =  (/) )
 
Theoremdifrab0eqim 3558* If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Jim Kingdon, 3-Aug-2018.)
 |-  ( V  =  { x  e.  V  |  ph
 }  ->  ( V  \  { x  e.  V  |  ph } )  =  (/) )
 
Theoreminssdif0im 3559 Intersection, subclass, and difference relationship. In classical logic the converse would also hold. (Contributed by Jim Kingdon, 3-Aug-2018.)
 |-  ( ( A  i^i  B )  C_  C  ->  ( A  i^i  ( B 
 \  C ) )  =  (/) )
 
Theoremdifid 3560 The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. (Contributed by NM, 22-Apr-2004.)
 |-  ( A  \  A )  =  (/)
 
TheoremdifidALT 3561 The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. Alternate proof of difid 3560. (Contributed by David Abernethy, 17-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  \  A )  =  (/)
 
Theoremdif0 3562 The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.)
 |-  ( A  \  (/) )  =  A
 
Theorem0dif 3563 The difference between the empty set and a class. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.)
 |-  ( (/)  \  A )  =  (/)
 
Theoremdisjdif 3564 A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.)
 |-  ( A  i^i  ( B  \  A ) )  =  (/)
 
Theoremdifin0 3565 The difference of a class from its intersection is empty. Theorem 37 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( A  i^i  B )  \  B )  =  (/)
 
Theoremundif1ss 3566 Absorption of difference by union. In classical logic, as Theorem 35 of [Suppes] p. 29, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.)
 |-  ( ( A  \  B )  u.  B )  C_  ( A  u.  B )
 
Theoremundif2ss 3567 Absorption of difference by union. In classical logic, as in Part of proof of Corollary 6K of [Enderton] p. 144, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.)
 |-  ( A  u.  ( B  \  A ) ) 
 C_  ( A  u.  B )
 
Theoremundifabs 3568 Absorption of difference by union. (Contributed by NM, 18-Aug-2013.)
 |-  ( A  u.  ( A  \  B ) )  =  A
 
Theoreminundifss 3569 The intersection and class difference of a class with another class are contained in the original class. In classical logic we'd be able to make a stronger statement: that everything in the original class is in the intersection or the difference (that is, this theorem would be equality rather than subset). (Contributed by Jim Kingdon, 4-Aug-2018.)
 |-  ( ( A  i^i  B )  u.  ( A 
 \  B ) ) 
 C_  A
 
Theoremdisjdif2 3570 The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.)
 |-  ( ( A  i^i  B )  =  (/)  ->  ( A  \  B )  =  A )
 
Theoremdifun2 3571 Absorption of union by difference. Theorem 36 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.)
 |-  ( ( A  u.  B )  \  B )  =  ( A  \  B )
 
Theoremundifss 3572 Union of complementary parts into whole. (Contributed by Jim Kingdon, 4-Aug-2018.)
 |-  ( A  C_  B  <->  ( A  u.  ( B 
 \  A ) ) 
 C_  B )
 
Theoremssdifin0 3573 A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013.) (Proof shortened by Mario Carneiro, 24-Aug-2015.)
 |-  ( A  C_  ( B  \  C )  ->  ( A  i^i  C )  =  (/) )
 
Theoremssdifeq0 3574 A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015.)
 |-  ( A  C_  ( B  \  A )  <->  A  =  (/) )
 
Theoremssundifim 3575 A consequence of inclusion in the union of two classes. In classical logic this would be a biconditional. (Contributed by Jim Kingdon, 4-Aug-2018.)
 |-  ( A  C_  ( B  u.  C )  ->  ( A  \  B ) 
 C_  C )
 
Theoremdifdifdirss 3576 Distributive law for class difference. In classical logic, as in Exercise 4.8 of [Stoll] p. 16, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.)
 |-  ( ( A  \  B )  \  C ) 
 C_  ( ( A 
 \  C )  \  ( B  \  C ) )
 
Theoremuneqdifeqim 3577 Two ways that  A and  B can "partition"  C (when  A and  B don't overlap and  A is a part of  C). In classical logic, the second implication would be a biconditional. (Contributed by Jim Kingdon, 4-Aug-2018.)
 |-  ( ( A  C_  C  /\  ( A  i^i  B )  =  (/) )  ->  ( ( A  u.  B )  =  C  ->  ( C  \  A )  =  B )
 )
 
Theoremr19.2m 3578* Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1684). The restricted version is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.) (Revised by Jim Kingdon, 7-Apr-2023.)
 |-  ( ( E. y  y  e.  A  /\  A. x  e.  A  ph )  ->  E. x  e.  A  ph )
 
Theoremr19.2mOLD 3579* Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1684). The restricted version is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.) Obsolete version of r19.2m 3578 as of 7-Apr-2023. (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( E. x  x  e.  A  /\  A. x  e.  A  ph )  ->  E. x  e.  A  ph )
 
Theoremr19.3rm 3580* Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 19-Dec-2018.)
 |- 
 F/ x ph   =>    |-  ( E. y  y  e.  A  ->  ( ph 
 <-> 
 A. x  e.  A  ph ) )
 
Theoremr19.28m 3581* Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.)
 |- 
 F/ x ph   =>    |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  (
 ph  /\  A. x  e.  A  ps ) ) )
 
Theoremr19.3rmv 3582* Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 6-Aug-2018.)
 |-  ( E. y  y  e.  A  ->  ( ph 
 <-> 
 A. x  e.  A  ph ) )
 
Theoremr19.9rmv 3583* Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 5-Aug-2018.)
 |-  ( E. y  y  e.  A  ->  ( ph 
 <-> 
 E. x  e.  A  ph ) )
 
Theoremr19.28mv 3584* Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 6-Aug-2018.)
 |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  (
 ph  /\  A. x  e.  A  ps ) ) )
 
Theoremr19.45mv 3585* Restricted version of Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
 |-  ( E. x  x  e.  A  ->  ( E. x  e.  A  ( ph  \/  ps )  <->  (
 ph  \/  E. x  e.  A  ps ) ) )
 
Theoremr19.44mv 3586* Restricted version of Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
 |-  ( E. y  y  e.  A  ->  ( E. x  e.  A  ( ph  \/  ps )  <->  ( E. x  e.  A  ph 
 \/  ps ) ) )
 
Theoremr19.27m 3587* Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.)
 |- 
 F/ x ps   =>    |-  ( E. x  x  e.  A  ->  (
 A. x  e.  A  ( ph  /\  ps )  <->  (
 A. x  e.  A  ph 
 /\  ps ) ) )
 
Theoremr19.27mv 3588* Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.)
 |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  (
 A. x  e.  A  ph 
 /\  ps ) ) )
 
Theoremrzal 3589* Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  =  (/)  ->  A. x  e.  A  ph )
 
Theoremrexn0 3590* Restricted existential quantification implies its restriction is nonempty (it is also inhabited as shown in rexm 3591). (Contributed by Szymon Jaroszewicz, 3-Apr-2007.)
 |-  ( E. x  e.  A  ph  ->  A  =/=  (/) )
 
Theoremrexm 3591* Restricted existential quantification implies its restriction is inhabited. (Contributed by Jim Kingdon, 16-Oct-2018.)
 |-  ( E. x  e.  A  ph  ->  E. x  x  e.  A )
 
Theoremralidm 3592* Idempotent law for restricted quantifier. (Contributed by NM, 28-Mar-1997.)
 |-  ( A. x  e.  A  A. x  e.  A  ph  <->  A. x  e.  A  ph )
 
Theoremral0 3593 Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.)
 |- 
 A. x  e.  (/)  ph
 
Theoremralf0 3594* The quantification of a falsehood is vacuous when true. (Contributed by NM, 26-Nov-2005.)
 |- 
 -.  ph   =>    |-  ( A. x  e.  A  ph  <->  A  =  (/) )
 
Theoremralm 3595 Inhabited classes and restricted quantification. (Contributed by Jim Kingdon, 6-Aug-2018.)
 |-  ( ( E. x  x  e.  A  ->  A. x  e.  A  ph ) 
 <-> 
 A. x  e.  A  ph )
 
Theoremraaanlem 3596* Special case of raaan 3597 where  A is inhabited. (Contributed by Jim Kingdon, 6-Aug-2018.)
 |- 
 F/ y ph   &    |-  F/ x ps   =>    |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps ) 
 <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) ) )
 
Theoremraaan 3597* Rearrange restricted quantifiers. (Contributed by NM, 26-Oct-2010.)
 |- 
 F/ y ph   &    |-  F/ x ps   =>    |-  ( A. x  e.  A  A. y  e.  A  (
 ph  /\  ps )  <->  (
 A. x  e.  A  ph 
 /\  A. y  e.  A  ps ) )
 
Theoremraaanv 3598* Rearrange restricted quantifiers. (Contributed by NM, 11-Mar-1997.)
 |-  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps ) 
 <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) )
 
Theoremsbss 3599* Set substitution into the first argument of a subset relation. (Contributed by Rodolfo Medina, 7-Jul-2010.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
 |-  ( [ y  /  x ] x  C_  A  <->  y 
 C_  A )
 
Theoremsbcssg 3600 Distribute proper substitution through a subclass relation. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Alexander van der Vekens, 23-Jul-2017.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. B  C_  C  <->  [_ A  /  x ]_ B  C_  [_ A  /  x ]_ C ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >