Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.29 | Unicode version |
Description: Theorem 19.29 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.29 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2 138 | . . . 4 | |
2 | 1 | ralimi 2520 | . . 3 |
3 | rexim 2551 | . . 3 | |
4 | 2, 3 | syl 14 | . 2 |
5 | 4 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wral 2435 wrex 2436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 df-ral 2440 df-rex 2441 |
This theorem is referenced by: r19.29r 2595 r19.29d2r 2601 r19.35-1 2607 triun 4077 ralxfrd 4424 elrnmptg 4840 fun11iun 5437 fmpt 5619 fliftfun 5748 epttop 12560 tgcnp 12679 lmtopcnp 12720 txlm 12749 metss 12964 bj-findis 13625 |
Copyright terms: Public domain | W3C validator |