ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.29 Unicode version

Theorem r19.29 2643
Description: Theorem 19.29 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.29  |-  ( ( A. x  e.  A  ph 
/\  E. x  e.  A  ps )  ->  E. x  e.  A  ( ph  /\ 
ps ) )

Proof of Theorem r19.29
StepHypRef Expression
1 pm3.2 139 . . . 4  |-  ( ph  ->  ( ps  ->  ( ph  /\  ps ) ) )
21ralimi 2569 . . 3  |-  ( A. x  e.  A  ph  ->  A. x  e.  A  ( ps  ->  ( ph  /\ 
ps ) ) )
3 rexim 2600 . . 3  |-  ( A. x  e.  A  ( ps  ->  ( ph  /\  ps ) )  ->  ( E. x  e.  A  ps  ->  E. x  e.  A  ( ph  /\  ps )
) )
42, 3syl 14 . 2  |-  ( A. x  e.  A  ph  ->  ( E. x  e.  A  ps  ->  E. x  e.  A  ( ph  /\  ps )
) )
54imp 124 1  |-  ( ( A. x  e.  A  ph 
/\  E. x  e.  A  ps )  ->  E. x  e.  A  ( ph  /\ 
ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wral 2484   E.wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-ral 2489  df-rex 2490
This theorem is referenced by:  r19.29r  2644  r19.29d2r  2650  r19.35-1  2656  triun  4155  ralxfrd  4509  elrnmptg  4930  fun11iun  5543  fmpt  5730  fliftfun  5865  rhmdvdsr  13937  epttop  14562  tgcnp  14681  lmtopcnp  14722  txlm  14751  metss  14966  bj-findis  15915
  Copyright terms: Public domain W3C validator