ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemdisj Unicode version

Theorem cauappcvgprlemdisj 7613
Description: Lemma for cauappcvgpr 7624. The putative limit is disjoint. (Contributed by Jim Kingdon, 18-Jul-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
Assertion
Ref Expression
cauappcvgprlemdisj  |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
Distinct variable groups:    A, p    L, p, q    ph, p, q    L, s    A, s, p    F, l, u, p, q, s    ph, s
Allowed substitution hints:    ph( u, l)    A( u, q, l)    L( u, l)

Proof of Theorem cauappcvgprlemdisj
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cauappcvgpr.app . . . . . . 7  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
2 simpl 108 . . . . . . . . 9  |-  ( ( ( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) )  ->  ( F `  p )  <Q  ( ( F `  q )  +Q  (
p  +Q  q ) ) )
32ralimi 2533 . . . . . . . 8  |-  ( A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) )  ->  A. q  e.  Q.  ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) ) )
43ralimi 2533 . . . . . . 7  |-  ( A. p  e.  Q.  A. q  e.  Q.  ( ( F `
 p )  <Q 
( ( F `  q )  +Q  (
p  +Q  q ) )  /\  ( F `
 q )  <Q 
( ( F `  p )  +Q  (
p  +Q  q ) ) )  ->  A. p  e.  Q.  A. q  e. 
Q.  ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) ) )
51, 4syl 14 . . . . . 6  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  ( F `  p )  <Q  ( ( F `  q )  +Q  (
p  +Q  q ) ) )
65adantr 274 . . . . 5  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  ->  A. p  e.  Q.  A. q  e. 
Q.  ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) ) )
7 oveq1 5860 . . . . . . . . . . . . 13  |-  ( l  =  s  ->  (
l  +Q  q )  =  ( s  +Q  q ) )
87breq1d 3999 . . . . . . . . . . . 12  |-  ( l  =  s  ->  (
( l  +Q  q
)  <Q  ( F `  q )  <->  ( s  +Q  q )  <Q  ( F `  q )
) )
98rexbidv 2471 . . . . . . . . . . 11  |-  ( l  =  s  ->  ( E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q )  <->  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
10 cauappcvgpr.lim . . . . . . . . . . . . 13  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
1110fveq2i 5499 . . . . . . . . . . . 12  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >. )
12 nqex 7325 . . . . . . . . . . . . . 14  |-  Q.  e.  _V
1312rabex 4133 . . . . . . . . . . . . 13  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) }  e.  _V
1412rabex 4133 . . . . . . . . . . . . 13  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u }  e.  _V
1513, 14op1st 6125 . . . . . . . . . . . 12  |-  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u } >. )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
1611, 15eqtri 2191 . . . . . . . . . . 11  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
179, 16elrab2 2889 . . . . . . . . . 10  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
1817simprbi 273 . . . . . . . . 9  |-  ( s  e.  ( 1st `  L
)  ->  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
)
19 oveq2 5861 . . . . . . . . . . 11  |-  ( q  =  p  ->  (
s  +Q  q )  =  ( s  +Q  p ) )
20 fveq2 5496 . . . . . . . . . . 11  |-  ( q  =  p  ->  ( F `  q )  =  ( F `  p ) )
2119, 20breq12d 4002 . . . . . . . . . 10  |-  ( q  =  p  ->  (
( s  +Q  q
)  <Q  ( F `  q )  <->  ( s  +Q  p )  <Q  ( F `  p )
) )
2221cbvrexv 2697 . . . . . . . . 9  |-  ( E. q  e.  Q.  (
s  +Q  q ) 
<Q  ( F `  q
)  <->  E. p  e.  Q.  ( s  +Q  p
)  <Q  ( F `  p ) )
2318, 22sylib 121 . . . . . . . 8  |-  ( s  e.  ( 1st `  L
)  ->  E. p  e.  Q.  ( s  +Q  p )  <Q  ( F `  p )
)
24 breq2 3993 . . . . . . . . . . 11  |-  ( u  =  s  ->  (
( ( F `  q )  +Q  q
)  <Q  u  <->  ( ( F `  q )  +Q  q )  <Q  s
) )
2524rexbidv 2471 . . . . . . . . . 10  |-  ( u  =  s  ->  ( E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u  <->  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  s
) )
2610fveq2i 5499 . . . . . . . . . . 11  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >. )
2713, 14op2nd 6126 . . . . . . . . . . 11  |-  ( 2nd `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u } >. )  =  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u }
2826, 27eqtri 2191 . . . . . . . . . 10  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u }
2925, 28elrab2 2889 . . . . . . . . 9  |-  ( s  e.  ( 2nd `  L
)  <->  ( s  e. 
Q.  /\  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  s
) )
3029simprbi 273 . . . . . . . 8  |-  ( s  e.  ( 2nd `  L
)  ->  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  s
)
3123, 30anim12i 336 . . . . . . 7  |-  ( ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) )  ->  ( E. p  e.  Q.  ( s  +Q  p
)  <Q  ( F `  p )  /\  E. q  e.  Q.  (
( F `  q
)  +Q  q ) 
<Q  s ) )
32 reeanv 2639 . . . . . . 7  |-  ( E. p  e.  Q.  E. q  e.  Q.  (
( s  +Q  p
)  <Q  ( F `  p )  /\  (
( F `  q
)  +Q  q ) 
<Q  s )  <->  ( E. p  e.  Q.  (
s  +Q  p ) 
<Q  ( F `  p
)  /\  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  s
) )
3331, 32sylibr 133 . . . . . 6  |-  ( ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) )  ->  E. p  e.  Q.  E. q  e. 
Q.  ( ( s  +Q  p )  <Q 
( F `  p
)  /\  ( ( F `  q )  +Q  q )  <Q  s
) )
3433adantl 275 . . . . 5  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  ->  E. p  e.  Q.  E. q  e. 
Q.  ( ( s  +Q  p )  <Q 
( F `  p
)  /\  ( ( F `  q )  +Q  q )  <Q  s
) )
356, 34r19.29d2r 2614 . . . 4  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  ->  E. p  e.  Q.  E. q  e. 
Q.  ( ( F `
 p )  <Q 
( ( F `  q )  +Q  (
p  +Q  q ) )  /\  ( ( s  +Q  p ) 
<Q  ( F `  p
)  /\  ( ( F `  q )  +Q  q )  <Q  s
) ) )
36 simprl 526 . . . . . . . . . . . 12  |-  ( ( ( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  (
( s  +Q  p
)  <Q  ( F `  p )  /\  (
( F `  q
)  +Q  q ) 
<Q  s ) )  -> 
( s  +Q  p
)  <Q  ( F `  p ) )
37 simpl 108 . . . . . . . . . . . 12  |-  ( ( ( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  (
( s  +Q  p
)  <Q  ( F `  p )  /\  (
( F `  q
)  +Q  q ) 
<Q  s ) )  -> 
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) ) )
3836, 37jca 304 . . . . . . . . . . 11  |-  ( ( ( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  (
( s  +Q  p
)  <Q  ( F `  p )  /\  (
( F `  q
)  +Q  q ) 
<Q  s ) )  -> 
( ( s  +Q  p )  <Q  ( F `  p )  /\  ( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) ) ) )
3917simplbi 272 . . . . . . . . . . . . . . 15  |-  ( s  e.  ( 1st `  L
)  ->  s  e.  Q. )
4039adantr 274 . . . . . . . . . . . . . 14  |-  ( ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) )  ->  s  e.  Q. )
4140ad3antlr 490 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  s  e.  Q. )
42 simplr 525 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  p  e.  Q. )
43 addclnq 7337 . . . . . . . . . . . . 13  |-  ( ( s  e.  Q.  /\  p  e.  Q. )  ->  ( s  +Q  p
)  e.  Q. )
4441, 42, 43syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  (
s  +Q  p )  e.  Q. )
45 cauappcvgpr.f . . . . . . . . . . . . . 14  |-  ( ph  ->  F : Q. --> Q. )
4645ad3antrrr 489 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  F : Q. --> Q. )
4746, 42ffvelrnd 5632 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  ( F `  p )  e.  Q. )
48 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  q  e.  Q. )
4946, 48ffvelrnd 5632 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  ( F `  q )  e.  Q. )
50 addclnq 7337 . . . . . . . . . . . . . 14  |-  ( ( p  e.  Q.  /\  q  e.  Q. )  ->  ( p  +Q  q
)  e.  Q. )
5142, 48, 50syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  (
p  +Q  q )  e.  Q. )
52 addclnq 7337 . . . . . . . . . . . . 13  |-  ( ( ( F `  q
)  e.  Q.  /\  ( p  +Q  q
)  e.  Q. )  ->  ( ( F `  q )  +Q  (
p  +Q  q ) )  e.  Q. )
5349, 51, 52syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  (
( F `  q
)  +Q  ( p  +Q  q ) )  e.  Q. )
54 ltsonq 7360 . . . . . . . . . . . . 13  |-  <Q  Or  Q.
55 sotr 4303 . . . . . . . . . . . . 13  |-  ( ( 
<Q  Or  Q.  /\  (
( s  +Q  p
)  e.  Q.  /\  ( F `  p )  e.  Q.  /\  (
( F `  q
)  +Q  ( p  +Q  q ) )  e.  Q. ) )  ->  ( ( ( s  +Q  p ) 
<Q  ( F `  p
)  /\  ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) ) )  ->  ( s  +Q  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) ) ) )
5654, 55mpan 422 . . . . . . . . . . . 12  |-  ( ( ( s  +Q  p
)  e.  Q.  /\  ( F `  p )  e.  Q.  /\  (
( F `  q
)  +Q  ( p  +Q  q ) )  e.  Q. )  -> 
( ( ( s  +Q  p )  <Q 
( F `  p
)  /\  ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) ) )  ->  ( s  +Q  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) ) ) )
5744, 47, 53, 56syl3anc 1233 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  (
( ( s  +Q  p )  <Q  ( F `  p )  /\  ( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) ) )  -> 
( s  +Q  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) ) ) )
5838, 57syl5 32 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  (
( ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) )  /\  ( ( s  +Q  p )  <Q 
( F `  p
)  /\  ( ( F `  q )  +Q  q )  <Q  s
) )  ->  (
s  +Q  p ) 
<Q  ( ( F `  q )  +Q  (
p  +Q  q ) ) ) )
59 simprr 527 . . . . . . . . . . 11  |-  ( ( ( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  (
( s  +Q  p
)  <Q  ( F `  p )  /\  (
( F `  q
)  +Q  q ) 
<Q  s ) )  -> 
( ( F `  q )  +Q  q
)  <Q  s )
6059a1i 9 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  (
( ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) )  /\  ( ( s  +Q  p )  <Q 
( F `  p
)  /\  ( ( F `  q )  +Q  q )  <Q  s
) )  ->  (
( F `  q
)  +Q  q ) 
<Q  s ) )
6158, 60jcad 305 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  (
( ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) )  /\  ( ( s  +Q  p )  <Q 
( F `  p
)  /\  ( ( F `  q )  +Q  q )  <Q  s
) )  ->  (
( s  +Q  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  (
( F `  q
)  +Q  q ) 
<Q  s ) ) )
62 addcomnqg 7343 . . . . . . . . . . . 12  |-  ( ( s  e.  Q.  /\  p  e.  Q. )  ->  ( s  +Q  p
)  =  ( p  +Q  s ) )
6341, 42, 62syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  (
s  +Q  p )  =  ( p  +Q  s ) )
64 addcomnqg 7343 . . . . . . . . . . . . 13  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
6564adantl 275 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  /\  (
f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
66 addassnqg 7344 . . . . . . . . . . . . 13  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
( f  +Q  g
)  +Q  h )  =  ( f  +Q  ( g  +Q  h
) ) )
6766adantl 275 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  /\  (
f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. ) )  -> 
( ( f  +Q  g )  +Q  h
)  =  ( f  +Q  ( g  +Q  h ) ) )
6849, 42, 48, 65, 67caov12d 6034 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  (
( F `  q
)  +Q  ( p  +Q  q ) )  =  ( p  +Q  ( ( F `  q )  +Q  q
) ) )
6963, 68breq12d 4002 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  (
( s  +Q  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  <->  ( p  +Q  s )  <Q  (
p  +Q  ( ( F `  q )  +Q  q ) ) ) )
7069anbi1d 462 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  (
( ( s  +Q  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) )  /\  ( ( F `
 q )  +Q  q )  <Q  s
)  <->  ( ( p  +Q  s )  <Q 
( p  +Q  (
( F `  q
)  +Q  q ) )  /\  ( ( F `  q )  +Q  q )  <Q 
s ) ) )
7161, 70sylibd 148 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  (
( ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) )  /\  ( ( s  +Q  p )  <Q 
( F `  p
)  /\  ( ( F `  q )  +Q  q )  <Q  s
) )  ->  (
( p  +Q  s
)  <Q  ( p  +Q  ( ( F `  q )  +Q  q
) )  /\  (
( F `  q
)  +Q  q ) 
<Q  s ) ) )
72 addclnq 7337 . . . . . . . . . . 11  |-  ( ( ( F `  q
)  e.  Q.  /\  q  e.  Q. )  ->  ( ( F `  q )  +Q  q
)  e.  Q. )
7349, 48, 72syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  (
( F `  q
)  +Q  q )  e.  Q. )
74 ltanqg 7362 . . . . . . . . . 10  |-  ( ( s  e.  Q.  /\  ( ( F `  q )  +Q  q
)  e.  Q.  /\  p  e.  Q. )  ->  ( s  <Q  (
( F `  q
)  +Q  q )  <-> 
( p  +Q  s
)  <Q  ( p  +Q  ( ( F `  q )  +Q  q
) ) ) )
7541, 73, 42, 74syl3anc 1233 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  (
s  <Q  ( ( F `
 q )  +Q  q )  <->  ( p  +Q  s )  <Q  (
p  +Q  ( ( F `  q )  +Q  q ) ) ) )
7675anbi1d 462 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  (
( s  <Q  (
( F `  q
)  +Q  q )  /\  ( ( F `
 q )  +Q  q )  <Q  s
)  <->  ( ( p  +Q  s )  <Q 
( p  +Q  (
( F `  q
)  +Q  q ) )  /\  ( ( F `  q )  +Q  q )  <Q 
s ) ) )
7771, 76sylibrd 168 . . . . . . 7  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  (
( ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) )  /\  ( ( s  +Q  p )  <Q 
( F `  p
)  /\  ( ( F `  q )  +Q  q )  <Q  s
) )  ->  (
s  <Q  ( ( F `
 q )  +Q  q )  /\  (
( F `  q
)  +Q  q ) 
<Q  s ) ) )
78 so2nr 4306 . . . . . . . . . 10  |-  ( ( 
<Q  Or  Q.  /\  (
s  e.  Q.  /\  ( ( F `  q )  +Q  q
)  e.  Q. )
)  ->  -.  (
s  <Q  ( ( F `
 q )  +Q  q )  /\  (
( F `  q
)  +Q  q ) 
<Q  s ) )
7954, 78mpan 422 . . . . . . . . 9  |-  ( ( s  e.  Q.  /\  ( ( F `  q )  +Q  q
)  e.  Q. )  ->  -.  ( s  <Q 
( ( F `  q )  +Q  q
)  /\  ( ( F `  q )  +Q  q )  <Q  s
) )
8041, 73, 79syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  -.  ( s  <Q  (
( F `  q
)  +Q  q )  /\  ( ( F `
 q )  +Q  q )  <Q  s
) )
8180pm2.21d 614 . . . . . . 7  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  (
( s  <Q  (
( F `  q
)  +Q  q )  /\  ( ( F `
 q )  +Q  q )  <Q  s
)  -> F.  )
)
8277, 81syld 45 . . . . . 6  |-  ( ( ( ( ph  /\  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )  /\  p  e.  Q. )  /\  q  e.  Q. )  ->  (
( ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) )  /\  ( ( s  +Q  p )  <Q 
( F `  p
)  /\  ( ( F `  q )  +Q  q )  <Q  s
) )  -> F.  ) )
8382rexlimdva 2587 . . . . 5  |-  ( ( ( ph  /\  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) ) )  /\  p  e.  Q. )  ->  ( E. q  e. 
Q.  ( ( F `
 p )  <Q 
( ( F `  q )  +Q  (
p  +Q  q ) )  /\  ( ( s  +Q  p ) 
<Q  ( F `  p
)  /\  ( ( F `  q )  +Q  q )  <Q  s
) )  -> F.  ) )
8483rexlimdva 2587 . . . 4  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  ->  ( E. p  e.  Q.  E. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  (
( s  +Q  p
)  <Q  ( F `  p )  /\  (
( F `  q
)  +Q  q ) 
<Q  s ) )  -> F.  ) )
8535, 84mpd 13 . . 3  |-  ( (
ph  /\  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )  -> F.  )
8685inegd 1367 . 2  |-  ( ph  ->  -.  ( s  e.  ( 1st `  L
)  /\  s  e.  ( 2nd `  L ) ) )
8786ralrimivw 2544 1  |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348   F. wfal 1353    e. wcel 2141   A.wral 2448   E.wrex 2449   {crab 2452   <.cop 3586   class class class wbr 3989    Or wor 4280   -->wf 5194   ` cfv 5198  (class class class)co 5853   1stc1st 6117   2ndc2nd 6118   Q.cnq 7242    +Q cplq 7244    <Q cltq 7247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-ltnqqs 7315
This theorem is referenced by:  cauappcvgprlemcl  7615
  Copyright terms: Public domain W3C validator