| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reximi | Unicode version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
| Ref | Expression |
|---|---|
| reximi.1 |
|
| Ref | Expression |
|---|---|
| reximi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximi.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | 2 | reximia 2600 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-ral 2488 df-rex 2489 |
| This theorem is referenced by: r19.29d2r 2649 r19.35-1 2655 r19.40 2659 reu3 2962 ssiun 3968 iinss 3978 elunirn 5834 tfrcllemssrecs 6437 nnawordex 6614 iinerm 6693 erovlem 6713 xpf1o 6940 fidcenumlemim 7053 omniwomnimkv 7268 genprndl 7633 genprndu 7634 appdiv0nq 7676 ltexprlemm 7712 recexsrlem 7886 rereceu 8001 recexre 8650 aprcl 8718 rexanre 11473 climi2 11541 climi0 11542 climcaucn 11604 prodmodclem2 11830 prodmodc 11831 gcdsupex 12220 gcdsupcl 12221 bezoutlemeu 12270 dfgcd3 12273 isnsgrp 13180 rhmdvdsr 13879 eltg2b 14468 lmcvg 14631 cnptoprest 14653 lmtopcnp 14664 txbas 14672 metrest 14920 elply2 15149 2sqlem7 15540 bj-charfunbi 15680 bj-findis 15848 |
| Copyright terms: Public domain | W3C validator |