![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reximi | Unicode version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
Ref | Expression |
---|---|
reximi.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
reximi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | reximia 2585 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-ral 2473 df-rex 2474 |
This theorem is referenced by: r19.29d2r 2634 r19.35-1 2640 r19.40 2644 reu3 2942 ssiun 3943 iinss 3953 elunirn 5783 tfrcllemssrecs 6371 nnawordex 6548 iinerm 6625 erovlem 6645 xpf1o 6862 fidcenumlemim 6969 omniwomnimkv 7183 genprndl 7538 genprndu 7539 appdiv0nq 7581 ltexprlemm 7617 recexsrlem 7791 rereceu 7906 recexre 8553 aprcl 8621 rexanre 11247 climi2 11314 climi0 11315 climcaucn 11377 prodmodclem2 11603 prodmodc 11604 gcdsupex 11976 gcdsupcl 11977 bezoutlemeu 12026 dfgcd3 12029 isnsgrp 12835 rhmdvdsr 13486 eltg2b 13938 lmcvg 14101 cnptoprest 14123 lmtopcnp 14134 txbas 14142 metrest 14390 2sqlem7 14852 bj-charfunbi 14947 bj-findis 15115 |
Copyright terms: Public domain | W3C validator |