| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reximi | Unicode version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
| Ref | Expression |
|---|---|
| reximi.1 |
|
| Ref | Expression |
|---|---|
| reximi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximi.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | 2 | reximia 2625 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: rexanaliim 2636 r19.29d2r 2675 r19.35-1 2681 r19.40 2685 reu3 2993 ssiun 4006 iinss 4016 elunirn 5889 tfrcllemssrecs 6496 nnawordex 6673 iinerm 6752 erovlem 6772 xpf1o 7001 fidcenumlemim 7115 omniwomnimkv 7330 genprndl 7704 genprndu 7705 appdiv0nq 7747 ltexprlemm 7783 recexsrlem 7957 rereceu 8072 recexre 8721 aprcl 8789 rexanre 11726 climi2 11794 climi0 11795 climcaucn 11857 prodmodclem2 12083 prodmodc 12084 gcdsupex 12473 gcdsupcl 12474 bezoutlemeu 12523 dfgcd3 12526 isnsgrp 13434 rhmdvdsr 14133 eltg2b 14722 lmcvg 14885 cnptoprest 14907 lmtopcnp 14918 txbas 14926 metrest 15174 elply2 15403 2sqlem7 15794 umgr2edg1 16001 umgr2edgneu 16004 bj-charfunbi 16132 bj-findis 16300 |
| Copyright terms: Public domain | W3C validator |