| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reximi | Unicode version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
| Ref | Expression |
|---|---|
| reximi.1 |
|
| Ref | Expression |
|---|---|
| reximi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximi.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | 2 | reximia 2602 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-ral 2490 df-rex 2491 |
| This theorem is referenced by: r19.29d2r 2651 r19.35-1 2657 r19.40 2661 reu3 2967 ssiun 3975 iinss 3985 elunirn 5848 tfrcllemssrecs 6451 nnawordex 6628 iinerm 6707 erovlem 6727 xpf1o 6956 fidcenumlemim 7069 omniwomnimkv 7284 genprndl 7654 genprndu 7655 appdiv0nq 7697 ltexprlemm 7733 recexsrlem 7907 rereceu 8022 recexre 8671 aprcl 8739 rexanre 11606 climi2 11674 climi0 11675 climcaucn 11737 prodmodclem2 11963 prodmodc 11964 gcdsupex 12353 gcdsupcl 12354 bezoutlemeu 12403 dfgcd3 12406 isnsgrp 13313 rhmdvdsr 14012 eltg2b 14601 lmcvg 14764 cnptoprest 14786 lmtopcnp 14797 txbas 14805 metrest 15053 elply2 15282 2sqlem7 15673 bj-charfunbi 15885 bj-findis 16053 |
| Copyright terms: Public domain | W3C validator |