![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reximi | Unicode version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
Ref | Expression |
---|---|
reximi.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
reximi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | reximia 2468 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-ial 1472 |
This theorem depends on definitions: df-bi 115 df-ral 2364 df-rex 2365 |
This theorem is referenced by: r19.29d2r 2512 r19.35-1 2517 r19.40 2521 reu3 2805 ssiun 3772 iinss 3781 elunirn 5545 tfrcllemssrecs 6117 nnawordex 6287 iinerm 6364 erovlem 6384 xpf1o 6560 fidcenumlemim 6661 genprndl 7080 genprndu 7081 appdiv0nq 7123 ltexprlemm 7159 recexsrlem 7320 rereceu 7424 recexre 8055 rexanre 10653 climi2 10676 climi0 10677 climcaucn 10740 gcdsupex 11227 gcdsupcl 11228 bezoutlemeu 11274 dfgcd3 11277 bj-findis 11874 |
Copyright terms: Public domain | W3C validator |