| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reximi | Unicode version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
| Ref | Expression |
|---|---|
| reximi.1 |
|
| Ref | Expression |
|---|---|
| reximi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximi.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | 2 | reximia 2600 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-ral 2488 df-rex 2489 |
| This theorem is referenced by: r19.29d2r 2649 r19.35-1 2655 r19.40 2659 reu3 2962 ssiun 3968 iinss 3978 elunirn 5834 tfrcllemssrecs 6437 nnawordex 6614 iinerm 6693 erovlem 6713 xpf1o 6940 fidcenumlemim 7053 omniwomnimkv 7268 genprndl 7633 genprndu 7634 appdiv0nq 7676 ltexprlemm 7712 recexsrlem 7886 rereceu 8001 recexre 8650 aprcl 8718 rexanre 11502 climi2 11570 climi0 11571 climcaucn 11633 prodmodclem2 11859 prodmodc 11860 gcdsupex 12249 gcdsupcl 12250 bezoutlemeu 12299 dfgcd3 12302 isnsgrp 13209 rhmdvdsr 13908 eltg2b 14497 lmcvg 14660 cnptoprest 14682 lmtopcnp 14693 txbas 14701 metrest 14949 elply2 15178 2sqlem7 15569 bj-charfunbi 15709 bj-findis 15877 |
| Copyright terms: Public domain | W3C validator |