| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reximi | Unicode version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
| Ref | Expression |
|---|---|
| reximi.1 |
|
| Ref | Expression |
|---|---|
| reximi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximi.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | 2 | reximia 2592 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: r19.29d2r 2641 r19.35-1 2647 r19.40 2651 reu3 2954 ssiun 3959 iinss 3969 elunirn 5816 tfrcllemssrecs 6419 nnawordex 6596 iinerm 6675 erovlem 6695 xpf1o 6914 fidcenumlemim 7027 omniwomnimkv 7242 genprndl 7605 genprndu 7606 appdiv0nq 7648 ltexprlemm 7684 recexsrlem 7858 rereceu 7973 recexre 8622 aprcl 8690 rexanre 11402 climi2 11470 climi0 11471 climcaucn 11533 prodmodclem2 11759 prodmodc 11760 gcdsupex 12149 gcdsupcl 12150 bezoutlemeu 12199 dfgcd3 12202 isnsgrp 13108 rhmdvdsr 13807 eltg2b 14374 lmcvg 14537 cnptoprest 14559 lmtopcnp 14570 txbas 14578 metrest 14826 elply2 15055 2sqlem7 15446 bj-charfunbi 15541 bj-findis 15709 |
| Copyright terms: Public domain | W3C validator |