ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.29a Unicode version

Theorem r19.29a 2674
Description: A commonly used pattern based on r19.29 2668. (Contributed by Thierry Arnoux, 22-Nov-2017.)
Hypotheses
Ref Expression
r19.29a.1  |-  ( ( ( ph  /\  x  e.  A )  /\  ps )  ->  ch )
r19.29a.2  |-  ( ph  ->  E. x  e.  A  ps )
Assertion
Ref Expression
r19.29a  |-  ( ph  ->  ch )
Distinct variable groups:    ch, x    ph, x
Allowed substitution hints:    ps( x)    A( x)

Proof of Theorem r19.29a
StepHypRef Expression
1 nfv 1574 . 2  |-  F/ x ph
2 r19.29a.1 . 2  |-  ( ( ( ph  /\  x  e.  A )  /\  ps )  ->  ch )
3 r19.29a.2 . 2  |-  ( ph  ->  E. x  e.  A  ps )
41, 2, 3r19.29af 2672 1  |-  ( ph  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   E.wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-ral 2513  df-rex 2514
This theorem is referenced by:  cnegexlem3  8319  cnegex  8320  modqmuladdnn0  10585  uzwodc  12553  1arith  12885  mhmid  13647  mhmmnd  13648  ghmgrp  13650  ghmcmn  13859  ringinvnz1ne0  14007  neitx  14936
  Copyright terms: Public domain W3C validator