ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.32vr Unicode version

Theorem r19.32vr 2625
Description: One direction of Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers. For decidable propositions this is an equivalence, as seen at r19.32vdc 2626. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
r19.32vr  |-  ( (
ph  \/  A. x  e.  A  ps )  ->  A. x  e.  A  ( ph  \/  ps )
)
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    A( x)

Proof of Theorem r19.32vr
StepHypRef Expression
1 nfv 1528 . 2  |-  F/ x ph
21r19.32r 2623 1  |-  ( (
ph  \/  A. x  e.  A  ps )  ->  A. x  e.  A  ( ph  \/  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 708   A.wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-gen 1449  ax-4 1510  ax-17 1526
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-ral 2460
This theorem is referenced by:  iinuniss  3969
  Copyright terms: Public domain W3C validator