| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.32vdc | Unicode version | ||
| Description: Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers,
where
|
| Ref | Expression |
|---|---|
| r19.32vdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.21v 2607 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | dfordc 897 |
. . 3
| |
| 4 | 3 | ralbidv 2530 |
. 2
|
| 5 | dfordc 897 |
. 2
| |
| 6 | 2, 4, 5 | 3bitr4d 220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-nf 1507 df-ral 2513 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |