Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.32vdc | Unicode version |
Description: Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers, where is decidable. (Contributed by Jim Kingdon, 4-Jun-2018.) |
Ref | Expression |
---|---|
r19.32vdc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.21v 2547 | . . 3 | |
2 | 1 | a1i 9 | . 2 DECID |
3 | dfordc 887 | . . 3 DECID | |
4 | 3 | ralbidv 2470 | . 2 DECID |
5 | dfordc 887 | . 2 DECID | |
6 | 2, 4, 5 | 3bitr4d 219 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wo 703 DECID wdc 829 wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-nf 1454 df-ral 2453 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |