Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.32vdc Unicode version

Theorem r19.32vdc 2580
 Description: Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers, where is decidable. (Contributed by Jim Kingdon, 4-Jun-2018.)
Assertion
Ref Expression
r19.32vdc DECID
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem r19.32vdc
StepHypRef Expression
1 r19.21v 2509 . . 3
21a1i 9 . 2 DECID
3 dfordc 877 . . 3 DECID
43ralbidv 2437 . 2 DECID
5 dfordc 877 . 2 DECID
62, 4, 53bitr4d 219 1 DECID
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 104   wo 697  DECID wdc 819  wral 2416 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-gen 1425  ax-4 1487  ax-17 1506  ax-ial 1514  ax-i5r 1515 This theorem depends on definitions:  df-bi 116  df-dc 820  df-nf 1437  df-ral 2421 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator