| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > r19.32r | Unicode version | ||
| Description: One direction of Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers. For decidable propositions this is an equivalence. (Contributed by Jim Kingdon, 19-Aug-2018.) | 
| Ref | Expression | 
|---|---|
| r19.32r.1 | 
 | 
| Ref | Expression | 
|---|---|
| r19.32r | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | r19.32r.1 | 
. . . 4
 | |
| 2 | orc 713 | 
. . . . 5
 | |
| 3 | 2 | a1d 22 | 
. . . 4
 | 
| 4 | 1, 3 | alrimi 1536 | 
. . 3
 | 
| 5 | df-ral 2480 | 
. . . 4
 | |
| 6 | olc 712 | 
. . . . . 6
 | |
| 7 | 6 | imim2i 12 | 
. . . . 5
 | 
| 8 | 7 | alimi 1469 | 
. . . 4
 | 
| 9 | 5, 8 | sylbi 121 | 
. . 3
 | 
| 10 | 4, 9 | jaoi 717 | 
. 2
 | 
| 11 | df-ral 2480 | 
. 2
 | |
| 12 | 10, 11 | sylibr 134 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-gen 1463 ax-4 1524 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 | 
| This theorem is referenced by: r19.32vr 2645 | 
| Copyright terms: Public domain | W3C validator |