ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.32r Unicode version

Theorem r19.32r 2514
Description: One direction of Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers. For decidable propositions this is an equivalence. (Contributed by Jim Kingdon, 19-Aug-2018.)
Hypothesis
Ref Expression
r19.32r.1  |-  F/ x ph
Assertion
Ref Expression
r19.32r  |-  ( (
ph  \/  A. x  e.  A  ps )  ->  A. x  e.  A  ( ph  \/  ps )
)

Proof of Theorem r19.32r
StepHypRef Expression
1 r19.32r.1 . . . 4  |-  F/ x ph
2 orc 668 . . . . 5  |-  ( ph  ->  ( ph  \/  ps ) )
32a1d 22 . . . 4  |-  ( ph  ->  ( x  e.  A  ->  ( ph  \/  ps ) ) )
41, 3alrimi 1460 . . 3  |-  ( ph  ->  A. x ( x  e.  A  ->  ( ph  \/  ps ) ) )
5 df-ral 2364 . . . 4  |-  ( A. x  e.  A  ps  <->  A. x ( x  e.  A  ->  ps )
)
6 olc 667 . . . . . 6  |-  ( ps 
->  ( ph  \/  ps ) )
76imim2i 12 . . . . 5  |-  ( ( x  e.  A  ->  ps )  ->  ( x  e.  A  ->  ( ph  \/  ps ) ) )
87alimi 1389 . . . 4  |-  ( A. x ( x  e.  A  ->  ps )  ->  A. x ( x  e.  A  ->  ( ph  \/  ps ) ) )
95, 8sylbi 119 . . 3  |-  ( A. x  e.  A  ps  ->  A. x ( x  e.  A  ->  ( ph  \/  ps ) ) )
104, 9jaoi 671 . 2  |-  ( (
ph  \/  A. x  e.  A  ps )  ->  A. x ( x  e.  A  ->  ( ph  \/  ps ) ) )
11 df-ral 2364 . 2  |-  ( A. x  e.  A  ( ph  \/  ps )  <->  A. x
( x  e.  A  ->  ( ph  \/  ps ) ) )
1210, 11sylibr 132 1  |-  ( (
ph  \/  A. x  e.  A  ps )  ->  A. x  e.  A  ( ph  \/  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 664   A.wal 1287   F/wnf 1394    e. wcel 1438   A.wral 2359
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-gen 1383  ax-4 1445
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-ral 2364
This theorem is referenced by:  r19.32vr  2515
  Copyright terms: Public domain W3C validator