Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.32r | Unicode version |
Description: One direction of Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers. For decidable propositions this is an equivalence. (Contributed by Jim Kingdon, 19-Aug-2018.) |
Ref | Expression |
---|---|
r19.32r.1 |
Ref | Expression |
---|---|
r19.32r |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.32r.1 | . . . 4 | |
2 | orc 707 | . . . . 5 | |
3 | 2 | a1d 22 | . . . 4 |
4 | 1, 3 | alrimi 1515 | . . 3 |
5 | df-ral 2453 | . . . 4 | |
6 | olc 706 | . . . . . 6 | |
7 | 6 | imim2i 12 | . . . . 5 |
8 | 7 | alimi 1448 | . . . 4 |
9 | 5, 8 | sylbi 120 | . . 3 |
10 | 4, 9 | jaoi 711 | . 2 |
11 | df-ral 2453 | . 2 | |
12 | 10, 11 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 703 wal 1346 wnf 1453 wcel 2141 wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-gen 1442 ax-4 1503 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-ral 2453 |
This theorem is referenced by: r19.32vr 2618 |
Copyright terms: Public domain | W3C validator |