| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > r19.30dc | Unicode version | ||
| Description: Restricted quantifier version of 19.30dc 1641. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof shortened by Wolf Lammen, 18-Jun-2023.) | 
| Ref | Expression | 
|---|---|
| r19.30dc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralnex 2485 | 
. . . . 5
 | |
| 2 | pm2.53 723 | 
. . . . . . 7
 | |
| 3 | 2 | orcoms 731 | 
. . . . . 6
 | 
| 4 | 3 | ral2imi 2562 | 
. . . . 5
 | 
| 5 | 1, 4 | biimtrrid 153 | 
. . . 4
 | 
| 6 | 5 | adantr 276 | 
. . 3
 | 
| 7 | dfordc 893 | 
. . . 4
 | |
| 8 | 7 | adantl 277 | 
. . 3
 | 
| 9 | 6, 8 | mpbird 167 | 
. 2
 | 
| 10 | 9 | orcomd 730 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-gen 1463 ax-ie2 1508 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-fal 1370 df-ral 2480 df-rex 2481 | 
| This theorem is referenced by: exmidontriimlem1 7288 | 
| Copyright terms: Public domain | W3C validator |