ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.30dc Unicode version

Theorem r19.30dc 2678
Description: Restricted quantifier version of 19.30dc 1673. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof shortened by Wolf Lammen, 18-Jun-2023.)
Assertion
Ref Expression
r19.30dc  |-  ( ( A. x  e.  A  ( ph  \/  ps )  /\ DECID  E. x  e.  A  ps )  ->  ( A. x  e.  A  ph  \/  E. x  e.  A  ps ) )

Proof of Theorem r19.30dc
StepHypRef Expression
1 ralnex 2518 . . . . 5  |-  ( A. x  e.  A  -.  ps 
<->  -.  E. x  e.  A  ps )
2 pm2.53 727 . . . . . . 7  |-  ( ( ps  \/  ph )  ->  ( -.  ps  ->  ph ) )
32orcoms 735 . . . . . 6  |-  ( (
ph  \/  ps )  ->  ( -.  ps  ->  ph ) )
43ral2imi 2595 . . . . 5  |-  ( A. x  e.  A  ( ph  \/  ps )  -> 
( A. x  e.  A  -.  ps  ->  A. x  e.  A  ph ) )
51, 4biimtrrid 153 . . . 4  |-  ( A. x  e.  A  ( ph  \/  ps )  -> 
( -.  E. x  e.  A  ps  ->  A. x  e.  A  ph ) )
65adantr 276 . . 3  |-  ( ( A. x  e.  A  ( ph  \/  ps )  /\ DECID  E. x  e.  A  ps )  ->  ( -.  E. x  e.  A  ps  ->  A. x  e.  A  ph ) )
7 dfordc 897 . . . 4  |-  (DECID  E. x  e.  A  ps  ->  ( ( E. x  e.  A  ps  \/  A. x  e.  A  ph )  <->  ( -.  E. x  e.  A  ps  ->  A. x  e.  A  ph ) ) )
87adantl 277 . . 3  |-  ( ( A. x  e.  A  ( ph  \/  ps )  /\ DECID  E. x  e.  A  ps )  ->  ( ( E. x  e.  A  ps  \/  A. x  e.  A  ph )  <->  ( -.  E. x  e.  A  ps  ->  A. x  e.  A  ph ) ) )
96, 8mpbird 167 . 2  |-  ( ( A. x  e.  A  ( ph  \/  ps )  /\ DECID  E. x  e.  A  ps )  ->  ( E. x  e.  A  ps  \/  A. x  e.  A  ph ) )
109orcomd 734 1  |-  ( ( A. x  e.  A  ( ph  \/  ps )  /\ DECID  E. x  e.  A  ps )  ->  ( A. x  e.  A  ph  \/  E. x  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839   A.wral 2508   E.wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-gen 1495  ax-ie2 1540
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-fal 1401  df-ral 2513  df-rex 2514
This theorem is referenced by:  exmidontriimlem1  7403
  Copyright terms: Public domain W3C validator