ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.32vr GIF version

Theorem r19.32vr 2618
Description: One direction of Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers. For decidable propositions this is an equivalence, as seen at r19.32vdc 2619. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
r19.32vr ((𝜑 ∨ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.32vr
StepHypRef Expression
1 nfv 1521 . 2 𝑥𝜑
21r19.32r 2616 1 ((𝜑 ∨ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 703  wral 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-gen 1442  ax-4 1503  ax-17 1519
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-ral 2453
This theorem is referenced by:  iinuniss  3955
  Copyright terms: Public domain W3C validator