ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metequiv2 Unicode version

Theorem metequiv2 14664
Description: If there is a sequence of radii approaching zero for which the balls of both metrics coincide, then the generated topologies are equivalent. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
metequiv.3  |-  J  =  ( MetOpen `  C )
metequiv.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metequiv2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) )  ->  J  =  K ) )
Distinct variable groups:    s, r, x, C    J, r, s, x    K, r, s, x    D, r, s, x    X, r, s, x

Proof of Theorem metequiv2
StepHypRef Expression
1 simprrr 540 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  (
x ( ball `  C
) s )  =  ( x ( ball `  D ) s ) )
2 simplll 533 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  C  e.  ( *Met `  X ) )
3 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  x  e.  X )
4 simprlr 538 . . . . . . . . . . . . 13  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  s  e.  RR+ )
54rpxrd 9763 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  s  e.  RR* )
6 simprll 537 . . . . . . . . . . . . 13  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  r  e.  RR+ )
76rpxrd 9763 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  r  e.  RR* )
8 simprrl 539 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  s  <_  r )
9 ssbl 14594 . . . . . . . . . . . 12  |-  ( ( ( C  e.  ( *Met `  X
)  /\  x  e.  X )  /\  (
s  e.  RR*  /\  r  e.  RR* )  /\  s  <_  r )  ->  (
x ( ball `  C
) s )  C_  ( x ( ball `  C ) r ) )
102, 3, 5, 7, 8, 9syl221anc 1260 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  (
x ( ball `  C
) s )  C_  ( x ( ball `  C ) r ) )
111, 10eqsstrrd 3216 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r ) )
12 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  D  e.  ( *Met `  X ) )
13 ssbl 14594 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( *Met `  X
)  /\  x  e.  X )  /\  (
s  e.  RR*  /\  r  e.  RR* )  /\  s  <_  r )  ->  (
x ( ball `  D
) s )  C_  ( x ( ball `  D ) r ) )
1412, 3, 5, 7, 8, 13syl221anc 1260 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  (
x ( ball `  D
) s )  C_  ( x ( ball `  D ) r ) )
151, 14eqsstrd 3215 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  (
x ( ball `  C
) s )  C_  ( x ( ball `  D ) r ) )
1611, 15jca 306 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  (
( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  (
x ( ball `  C
) s )  C_  ( x ( ball `  D ) r ) ) )
1716expr 375 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( r  e.  RR+  /\  s  e.  RR+ )
)  ->  ( (
s  <_  r  /\  ( x ( ball `  C ) s )  =  ( x (
ball `  D )
s ) )  -> 
( ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  /\  ( x ( ball `  C ) s ) 
C_  ( x (
ball `  D )
r ) ) ) )
1817anassrs 400 . . . . . . 7  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  r  e.  RR+ )  /\  s  e.  RR+ )  ->  ( ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) )  ->  ( ( x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  ( x (
ball `  C )
s )  C_  (
x ( ball `  D
) r ) ) ) )
1918reximdva 2596 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  r  e.  RR+ )  ->  ( E. s  e.  RR+  ( s  <_  r  /\  ( x ( ball `  C ) s )  =  ( x (
ball `  D )
s ) )  ->  E. s  e.  RR+  (
( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  (
x ( ball `  C
) s )  C_  ( x ( ball `  D ) r ) ) ) )
20 r19.40 2648 . . . . . 6  |-  ( E. s  e.  RR+  (
( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  (
x ( ball `  C
) s )  C_  ( x ( ball `  D ) r ) )  ->  ( E. s  e.  RR+  ( x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  E. s  e.  RR+  ( x ( ball `  C ) s ) 
C_  ( x (
ball `  D )
r ) ) )
2119, 20syl6 33 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  r  e.  RR+ )  ->  ( E. s  e.  RR+  ( s  <_  r  /\  ( x ( ball `  C ) s )  =  ( x (
ball `  D )
s ) )  -> 
( E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  E. s  e.  RR+  ( x ( ball `  C
) s )  C_  ( x ( ball `  D ) r ) ) ) )
2221ralimdva 2561 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) )  ->  A. r  e.  RR+  ( E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  E. s  e.  RR+  ( x ( ball `  C
) s )  C_  ( x ( ball `  D ) r ) ) ) )
23 r19.26 2620 . . . 4  |-  ( A. r  e.  RR+  ( E. s  e.  RR+  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  E. s  e.  RR+  ( x ( ball `  C ) s ) 
C_  ( x (
ball `  D )
r ) )  <->  ( A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  /\  A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  C )
s )  C_  (
x ( ball `  D
) r ) ) )
2422, 23imbitrdi 161 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) )  ->  ( A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  C )
s )  C_  (
x ( ball `  D
) r ) ) ) )
2524ralimdva 2561 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) )  ->  A. x  e.  X  ( A. r  e.  RR+  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  C ) s ) 
C_  ( x (
ball `  D )
r ) ) ) )
26 metequiv.3 . . 3  |-  J  =  ( MetOpen `  C )
27 metequiv.4 . . 3  |-  K  =  ( MetOpen `  D )
2826, 27metequiv 14663 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( J  =  K  <->  A. x  e.  X  ( A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  /\  A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  C )
s )  C_  (
x ( ball `  D
) r ) ) ) )
2925, 28sylibrd 169 1  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) )  ->  J  =  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473    C_ wss 3153   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   RR*cxr 8053    <_ cle 8055   RR+crp 9719   *Metcxmet 14032   ballcbl 14034   MetOpencmopn 14037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-map 6704  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-xneg 9838  df-xadd 9839  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-topgen 12871  df-psmet 14039  df-xmet 14040  df-bl 14042  df-mopn 14043  df-top 14166  df-bases 14211
This theorem is referenced by:  bdmopn  14672
  Copyright terms: Public domain W3C validator