ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metequiv2 Unicode version

Theorem metequiv2 14886
Description: If there is a sequence of radii approaching zero for which the balls of both metrics coincide, then the generated topologies are equivalent. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
metequiv.3  |-  J  =  ( MetOpen `  C )
metequiv.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metequiv2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) )  ->  J  =  K ) )
Distinct variable groups:    s, r, x, C    J, r, s, x    K, r, s, x    D, r, s, x    X, r, s, x

Proof of Theorem metequiv2
StepHypRef Expression
1 simprrr 540 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  (
x ( ball `  C
) s )  =  ( x ( ball `  D ) s ) )
2 simplll 533 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  C  e.  ( *Met `  X ) )
3 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  x  e.  X )
4 simprlr 538 . . . . . . . . . . . . 13  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  s  e.  RR+ )
54rpxrd 9801 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  s  e.  RR* )
6 simprll 537 . . . . . . . . . . . . 13  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  r  e.  RR+ )
76rpxrd 9801 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  r  e.  RR* )
8 simprrl 539 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  s  <_  r )
9 ssbl 14816 . . . . . . . . . . . 12  |-  ( ( ( C  e.  ( *Met `  X
)  /\  x  e.  X )  /\  (
s  e.  RR*  /\  r  e.  RR* )  /\  s  <_  r )  ->  (
x ( ball `  C
) s )  C_  ( x ( ball `  C ) r ) )
102, 3, 5, 7, 8, 9syl221anc 1260 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  (
x ( ball `  C
) s )  C_  ( x ( ball `  C ) r ) )
111, 10eqsstrrd 3229 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r ) )
12 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  D  e.  ( *Met `  X ) )
13 ssbl 14816 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( *Met `  X
)  /\  x  e.  X )  /\  (
s  e.  RR*  /\  r  e.  RR* )  /\  s  <_  r )  ->  (
x ( ball `  D
) s )  C_  ( x ( ball `  D ) r ) )
1412, 3, 5, 7, 8, 13syl221anc 1260 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  (
x ( ball `  D
) s )  C_  ( x ( ball `  D ) r ) )
151, 14eqsstrd 3228 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  (
x ( ball `  C
) s )  C_  ( x ( ball `  D ) r ) )
1611, 15jca 306 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  (
( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  (
x ( ball `  C
) s )  C_  ( x ( ball `  D ) r ) ) )
1716expr 375 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( r  e.  RR+  /\  s  e.  RR+ )
)  ->  ( (
s  <_  r  /\  ( x ( ball `  C ) s )  =  ( x (
ball `  D )
s ) )  -> 
( ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  /\  ( x ( ball `  C ) s ) 
C_  ( x (
ball `  D )
r ) ) ) )
1817anassrs 400 . . . . . . 7  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  r  e.  RR+ )  /\  s  e.  RR+ )  ->  ( ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) )  ->  ( ( x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  ( x (
ball `  C )
s )  C_  (
x ( ball `  D
) r ) ) ) )
1918reximdva 2607 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  r  e.  RR+ )  ->  ( E. s  e.  RR+  ( s  <_  r  /\  ( x ( ball `  C ) s )  =  ( x (
ball `  D )
s ) )  ->  E. s  e.  RR+  (
( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  (
x ( ball `  C
) s )  C_  ( x ( ball `  D ) r ) ) ) )
20 r19.40 2659 . . . . . 6  |-  ( E. s  e.  RR+  (
( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  (
x ( ball `  C
) s )  C_  ( x ( ball `  D ) r ) )  ->  ( E. s  e.  RR+  ( x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  E. s  e.  RR+  ( x ( ball `  C ) s ) 
C_  ( x (
ball `  D )
r ) ) )
2119, 20syl6 33 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  r  e.  RR+ )  ->  ( E. s  e.  RR+  ( s  <_  r  /\  ( x ( ball `  C ) s )  =  ( x (
ball `  D )
s ) )  -> 
( E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  E. s  e.  RR+  ( x ( ball `  C
) s )  C_  ( x ( ball `  D ) r ) ) ) )
2221ralimdva 2572 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) )  ->  A. r  e.  RR+  ( E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  E. s  e.  RR+  ( x ( ball `  C
) s )  C_  ( x ( ball `  D ) r ) ) ) )
23 r19.26 2631 . . . 4  |-  ( A. r  e.  RR+  ( E. s  e.  RR+  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  E. s  e.  RR+  ( x ( ball `  C ) s ) 
C_  ( x (
ball `  D )
r ) )  <->  ( A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  /\  A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  C )
s )  C_  (
x ( ball `  D
) r ) ) )
2422, 23imbitrdi 161 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) )  ->  ( A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  C )
s )  C_  (
x ( ball `  D
) r ) ) ) )
2524ralimdva 2572 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) )  ->  A. x  e.  X  ( A. r  e.  RR+  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  C ) s ) 
C_  ( x (
ball `  D )
r ) ) ) )
26 metequiv.3 . . 3  |-  J  =  ( MetOpen `  C )
27 metequiv.4 . . 3  |-  K  =  ( MetOpen `  D )
2826, 27metequiv 14885 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( J  =  K  <->  A. x  e.  X  ( A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  /\  A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  C )
s )  C_  (
x ( ball `  D
) r ) ) ) )
2925, 28sylibrd 169 1  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) )  ->  J  =  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   A.wral 2483   E.wrex 2484    C_ wss 3165   class class class wbr 4043   ` cfv 5268  (class class class)co 5934   RR*cxr 8088    <_ cle 8090   RR+crp 9757   *Metcxmet 14216   ballcbl 14218   MetOpencmopn 14221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-map 6727  df-sup 7068  df-inf 7069  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-xneg 9876  df-xadd 9877  df-seqfrec 10574  df-exp 10665  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229  df-topgen 13010  df-psmet 14223  df-xmet 14224  df-bl 14226  df-mopn 14227  df-top 14388  df-bases 14433
This theorem is referenced by:  bdmopn  14894
  Copyright terms: Public domain W3C validator