ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.41 Unicode version

Theorem r19.41 2625
Description: Restricted quantifier version of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 1-Nov-2010.)
Hypothesis
Ref Expression
r19.41.1  |-  F/ x ps
Assertion
Ref Expression
r19.41  |-  ( E. x  e.  A  (
ph  /\  ps )  <->  ( E. x  e.  A  ph 
/\  ps ) )

Proof of Theorem r19.41
StepHypRef Expression
1 anass 399 . . . 4  |-  ( ( ( x  e.  A  /\  ph )  /\  ps ) 
<->  ( x  e.  A  /\  ( ph  /\  ps ) ) )
21exbii 1598 . . 3  |-  ( E. x ( ( x  e.  A  /\  ph )  /\  ps )  <->  E. x
( x  e.  A  /\  ( ph  /\  ps ) ) )
3 r19.41.1 . . . 4  |-  F/ x ps
4319.41 1679 . . 3  |-  ( E. x ( ( x  e.  A  /\  ph )  /\  ps )  <->  ( E. x ( x  e.  A  /\  ph )  /\  ps ) )
52, 4bitr3i 185 . 2  |-  ( E. x ( x  e.  A  /\  ( ph  /\ 
ps ) )  <->  ( E. x ( x  e.  A  /\  ph )  /\  ps ) )
6 df-rex 2454 . 2  |-  ( E. x  e.  A  (
ph  /\  ps )  <->  E. x ( x  e.  A  /\  ( ph  /\ 
ps ) ) )
7 df-rex 2454 . . 3  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
87anbi1i 455 . 2  |-  ( ( E. x  e.  A  ph 
/\  ps )  <->  ( E. x ( x  e.  A  /\  ph )  /\  ps ) )
95, 6, 83bitr4i 211 1  |-  ( E. x  e.  A  (
ph  /\  ps )  <->  ( E. x  e.  A  ph 
/\  ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   F/wnf 1453   E.wex 1485    e. wcel 2141   E.wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-rex 2454
This theorem is referenced by:  r19.41v  2626
  Copyright terms: Public domain W3C validator