ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexanuz Unicode version

Theorem rexanuz 10792
Description: Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.)
Assertion
Ref Expression
rexanuz  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
Distinct variable groups:    j, k    ph, j    ps, j
Allowed substitution hints:    ph( k)    ps( k)

Proof of Theorem rexanuz
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.26 2561 . . . 4  |-  ( A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( A. k  e.  ( ZZ>= `  j ) ph  /\  A. k  e.  ( ZZ>= `  j ) ps )
)
21rexbii 2445 . . 3  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  E. j  e.  ZZ  ( A. k  e.  ( ZZ>= `  j ) ph  /\  A. k  e.  ( ZZ>= `  j ) ps ) )
3 r19.40 2588 . . 3  |-  ( E. j  e.  ZZ  ( A. k  e.  ( ZZ>=
`  j ) ph  /\ 
A. k  e.  (
ZZ>= `  j ) ps )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
42, 3sylbi 120 . 2  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps )
)
5 uzf 9353 . . . 4  |-  ZZ>= : ZZ --> ~P ZZ
6 ffn 5280 . . . 4  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
7 raleq 2629 . . . . 5  |-  ( x  =  ( ZZ>= `  j
)  ->  ( A. k  e.  x  ph  <->  A. k  e.  ( ZZ>= `  j ) ph )
)
87rexrn 5565 . . . 4  |-  ( ZZ>=  Fn  ZZ  ->  ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
95, 6, 8mp2b 8 . . 3  |-  ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
10 raleq 2629 . . . . 5  |-  ( y  =  ( ZZ>= `  j
)  ->  ( A. k  e.  y  ps  <->  A. k  e.  ( ZZ>= `  j ) ps )
)
1110rexrn 5565 . . . 4  |-  ( ZZ>=  Fn  ZZ  ->  ( E. y  e.  ran  ZZ>= A. k  e.  y  ps  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
125, 6, 11mp2b 8 . . 3  |-  ( E. y  e.  ran  ZZ>= A. k  e.  y  ps  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps )
13 uzin2 10791 . . . . . . . . 9  |-  ( ( x  e.  ran  ZZ>=  /\  y  e.  ran  ZZ>= )  -> 
( x  i^i  y
)  e.  ran  ZZ>= )
14 inss1 3301 . . . . . . . . . . . 12  |-  ( x  i^i  y )  C_  x
15 ssralv 3166 . . . . . . . . . . . 12  |-  ( ( x  i^i  y ) 
C_  x  ->  ( A. k  e.  x  ph 
->  A. k  e.  ( x  i^i  y )
ph ) )
1614, 15ax-mp 5 . . . . . . . . . . 11  |-  ( A. k  e.  x  ph  ->  A. k  e.  ( x  i^i  y )
ph )
17 inss2 3302 . . . . . . . . . . . 12  |-  ( x  i^i  y )  C_  y
18 ssralv 3166 . . . . . . . . . . . 12  |-  ( ( x  i^i  y ) 
C_  y  ->  ( A. k  e.  y  ps  ->  A. k  e.  ( x  i^i  y ) ps ) )
1917, 18ax-mp 5 . . . . . . . . . . 11  |-  ( A. k  e.  y  ps  ->  A. k  e.  ( x  i^i  y ) ps )
2016, 19anim12i 336 . . . . . . . . . 10  |-  ( ( A. k  e.  x  ph 
/\  A. k  e.  y  ps )  ->  ( A. k  e.  (
x  i^i  y ) ph  /\  A. k  e.  ( x  i^i  y
) ps ) )
21 r19.26 2561 . . . . . . . . . 10  |-  ( A. k  e.  ( x  i^i  y ) ( ph  /\ 
ps )  <->  ( A. k  e.  ( x  i^i  y ) ph  /\  A. k  e.  ( x  i^i  y ) ps ) )
2220, 21sylibr 133 . . . . . . . . 9  |-  ( ( A. k  e.  x  ph 
/\  A. k  e.  y  ps )  ->  A. k  e.  ( x  i^i  y
) ( ph  /\  ps ) )
23 raleq 2629 . . . . . . . . . 10  |-  ( z  =  ( x  i^i  y )  ->  ( A. k  e.  z 
( ph  /\  ps )  <->  A. k  e.  ( x  i^i  y ) (
ph  /\  ps )
) )
2423rspcev 2793 . . . . . . . . 9  |-  ( ( ( x  i^i  y
)  e.  ran  ZZ>=  /\  A. k  e.  ( x  i^i  y ) (
ph  /\  ps )
)  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) )
2513, 22, 24syl2an 287 . . . . . . . 8  |-  ( ( ( x  e.  ran  ZZ>=  /\  y  e.  ran  ZZ>= )  /\  ( A. k  e.  x  ph  /\  A. k  e.  y  ps ) )  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) )
2625an4s 578 . . . . . . 7  |-  ( ( ( x  e.  ran  ZZ>=  /\ 
A. k  e.  x  ph )  /\  ( y  e.  ran  ZZ>=  /\  A. k  e.  y  ps ) )  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) )
2726rexlimdvaa 2553 . . . . . 6  |-  ( ( x  e.  ran  ZZ>=  /\  A. k  e.  x  ph )  ->  ( E. y  e.  ran  ZZ>= A. k  e.  y  ps  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) ) )
2827rexlimiva 2547 . . . . 5  |-  ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  ->  ( E. y  e. 
ran  ZZ>= A. k  e.  y  ps  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) ) )
2928imp 123 . . . 4  |-  ( ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  /\ 
E. y  e.  ran  ZZ>= A. k  e.  y  ps )  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) )
30 raleq 2629 . . . . . 6  |-  ( z  =  ( ZZ>= `  j
)  ->  ( A. k  e.  z  ( ph  /\  ps )  <->  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
) )
3130rexrn 5565 . . . . 5  |-  ( ZZ>=  Fn  ZZ  ->  ( E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\ 
ps )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
) )
325, 6, 31mp2b 8 . . . 4  |-  ( E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
)
3329, 32sylib 121 . . 3  |-  ( ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  /\ 
E. y  e.  ran  ZZ>= A. k  e.  y  ps )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
)
349, 12, 33syl2anbr 290 . 2  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps ) )
354, 34impbii 125 1  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1481   A.wral 2417   E.wrex 2418    i^i cin 3075    C_ wss 3076   ~Pcpw 3515   ran crn 4548    Fn wfn 5126   -->wf 5127   ` cfv 5131   ZZcz 9078   ZZ>=cuz 9350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351
This theorem is referenced by:  rexfiuz  10793  rexuz3  10794  rexanuz2  10795
  Copyright terms: Public domain W3C validator