ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexanuz Unicode version

Theorem rexanuz 10870
Description: Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.)
Assertion
Ref Expression
rexanuz  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
Distinct variable groups:    j, k    ph, j    ps, j
Allowed substitution hints:    ph( k)    ps( k)

Proof of Theorem rexanuz
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.26 2583 . . . 4  |-  ( A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( A. k  e.  ( ZZ>= `  j ) ph  /\  A. k  e.  ( ZZ>= `  j ) ps )
)
21rexbii 2464 . . 3  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  E. j  e.  ZZ  ( A. k  e.  ( ZZ>= `  j ) ph  /\  A. k  e.  ( ZZ>= `  j ) ps ) )
3 r19.40 2611 . . 3  |-  ( E. j  e.  ZZ  ( A. k  e.  ( ZZ>=
`  j ) ph  /\ 
A. k  e.  (
ZZ>= `  j ) ps )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
42, 3sylbi 120 . 2  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps )
)
5 uzf 9425 . . . 4  |-  ZZ>= : ZZ --> ~P ZZ
6 ffn 5316 . . . 4  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
7 raleq 2652 . . . . 5  |-  ( x  =  ( ZZ>= `  j
)  ->  ( A. k  e.  x  ph  <->  A. k  e.  ( ZZ>= `  j ) ph )
)
87rexrn 5601 . . . 4  |-  ( ZZ>=  Fn  ZZ  ->  ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
95, 6, 8mp2b 8 . . 3  |-  ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
10 raleq 2652 . . . . 5  |-  ( y  =  ( ZZ>= `  j
)  ->  ( A. k  e.  y  ps  <->  A. k  e.  ( ZZ>= `  j ) ps )
)
1110rexrn 5601 . . . 4  |-  ( ZZ>=  Fn  ZZ  ->  ( E. y  e.  ran  ZZ>= A. k  e.  y  ps  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
125, 6, 11mp2b 8 . . 3  |-  ( E. y  e.  ran  ZZ>= A. k  e.  y  ps  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps )
13 uzin2 10869 . . . . . . . . 9  |-  ( ( x  e.  ran  ZZ>=  /\  y  e.  ran  ZZ>= )  -> 
( x  i^i  y
)  e.  ran  ZZ>= )
14 inss1 3327 . . . . . . . . . . . 12  |-  ( x  i^i  y )  C_  x
15 ssralv 3192 . . . . . . . . . . . 12  |-  ( ( x  i^i  y ) 
C_  x  ->  ( A. k  e.  x  ph 
->  A. k  e.  ( x  i^i  y )
ph ) )
1614, 15ax-mp 5 . . . . . . . . . . 11  |-  ( A. k  e.  x  ph  ->  A. k  e.  ( x  i^i  y )
ph )
17 inss2 3328 . . . . . . . . . . . 12  |-  ( x  i^i  y )  C_  y
18 ssralv 3192 . . . . . . . . . . . 12  |-  ( ( x  i^i  y ) 
C_  y  ->  ( A. k  e.  y  ps  ->  A. k  e.  ( x  i^i  y ) ps ) )
1917, 18ax-mp 5 . . . . . . . . . . 11  |-  ( A. k  e.  y  ps  ->  A. k  e.  ( x  i^i  y ) ps )
2016, 19anim12i 336 . . . . . . . . . 10  |-  ( ( A. k  e.  x  ph 
/\  A. k  e.  y  ps )  ->  ( A. k  e.  (
x  i^i  y ) ph  /\  A. k  e.  ( x  i^i  y
) ps ) )
21 r19.26 2583 . . . . . . . . . 10  |-  ( A. k  e.  ( x  i^i  y ) ( ph  /\ 
ps )  <->  ( A. k  e.  ( x  i^i  y ) ph  /\  A. k  e.  ( x  i^i  y ) ps ) )
2220, 21sylibr 133 . . . . . . . . 9  |-  ( ( A. k  e.  x  ph 
/\  A. k  e.  y  ps )  ->  A. k  e.  ( x  i^i  y
) ( ph  /\  ps ) )
23 raleq 2652 . . . . . . . . . 10  |-  ( z  =  ( x  i^i  y )  ->  ( A. k  e.  z 
( ph  /\  ps )  <->  A. k  e.  ( x  i^i  y ) (
ph  /\  ps )
) )
2423rspcev 2816 . . . . . . . . 9  |-  ( ( ( x  i^i  y
)  e.  ran  ZZ>=  /\  A. k  e.  ( x  i^i  y ) (
ph  /\  ps )
)  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) )
2513, 22, 24syl2an 287 . . . . . . . 8  |-  ( ( ( x  e.  ran  ZZ>=  /\  y  e.  ran  ZZ>= )  /\  ( A. k  e.  x  ph  /\  A. k  e.  y  ps ) )  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) )
2625an4s 578 . . . . . . 7  |-  ( ( ( x  e.  ran  ZZ>=  /\ 
A. k  e.  x  ph )  /\  ( y  e.  ran  ZZ>=  /\  A. k  e.  y  ps ) )  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) )
2726rexlimdvaa 2575 . . . . . 6  |-  ( ( x  e.  ran  ZZ>=  /\  A. k  e.  x  ph )  ->  ( E. y  e.  ran  ZZ>= A. k  e.  y  ps  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) ) )
2827rexlimiva 2569 . . . . 5  |-  ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  ->  ( E. y  e. 
ran  ZZ>= A. k  e.  y  ps  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) ) )
2928imp 123 . . . 4  |-  ( ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  /\ 
E. y  e.  ran  ZZ>= A. k  e.  y  ps )  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) )
30 raleq 2652 . . . . . 6  |-  ( z  =  ( ZZ>= `  j
)  ->  ( A. k  e.  z  ( ph  /\  ps )  <->  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
) )
3130rexrn 5601 . . . . 5  |-  ( ZZ>=  Fn  ZZ  ->  ( E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\ 
ps )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
) )
325, 6, 31mp2b 8 . . . 4  |-  ( E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
)
3329, 32sylib 121 . . 3  |-  ( ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  /\ 
E. y  e.  ran  ZZ>= A. k  e.  y  ps )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
)
349, 12, 33syl2anbr 290 . 2  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps ) )
354, 34impbii 125 1  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2128   A.wral 2435   E.wrex 2436    i^i cin 3101    C_ wss 3102   ~Pcpw 3543   ran crn 4584    Fn wfn 5162   -->wf 5163   ` cfv 5167   ZZcz 9150   ZZ>=cuz 9422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-addcom 7815  ax-addass 7817  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-0id 7823  ax-rnegex 7824  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-inn 8817  df-n0 9074  df-z 9151  df-uz 9423
This theorem is referenced by:  rexfiuz  10871  rexuz3  10872  rexanuz2  10873
  Copyright terms: Public domain W3C validator