ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexanuz Unicode version

Theorem rexanuz 10421
Description: Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.)
Assertion
Ref Expression
rexanuz  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
Distinct variable groups:    j, k    ph, j    ps, j
Allowed substitution hints:    ph( k)    ps( k)

Proof of Theorem rexanuz
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.26 2497 . . . 4  |-  ( A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( A. k  e.  ( ZZ>= `  j ) ph  /\  A. k  e.  ( ZZ>= `  j ) ps )
)
21rexbii 2385 . . 3  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  E. j  e.  ZZ  ( A. k  e.  ( ZZ>= `  j ) ph  /\  A. k  e.  ( ZZ>= `  j ) ps ) )
3 r19.40 2521 . . 3  |-  ( E. j  e.  ZZ  ( A. k  e.  ( ZZ>=
`  j ) ph  /\ 
A. k  e.  (
ZZ>= `  j ) ps )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
42, 3sylbi 119 . 2  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps )
)
5 uzf 9022 . . . 4  |-  ZZ>= : ZZ --> ~P ZZ
6 ffn 5161 . . . 4  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
7 raleq 2562 . . . . 5  |-  ( x  =  ( ZZ>= `  j
)  ->  ( A. k  e.  x  ph  <->  A. k  e.  ( ZZ>= `  j ) ph )
)
87rexrn 5436 . . . 4  |-  ( ZZ>=  Fn  ZZ  ->  ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
95, 6, 8mp2b 8 . . 3  |-  ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
10 raleq 2562 . . . . 5  |-  ( y  =  ( ZZ>= `  j
)  ->  ( A. k  e.  y  ps  <->  A. k  e.  ( ZZ>= `  j ) ps )
)
1110rexrn 5436 . . . 4  |-  ( ZZ>=  Fn  ZZ  ->  ( E. y  e.  ran  ZZ>= A. k  e.  y  ps  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
125, 6, 11mp2b 8 . . 3  |-  ( E. y  e.  ran  ZZ>= A. k  e.  y  ps  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps )
13 uzin2 10420 . . . . . . . . 9  |-  ( ( x  e.  ran  ZZ>=  /\  y  e.  ran  ZZ>= )  -> 
( x  i^i  y
)  e.  ran  ZZ>= )
14 inss1 3220 . . . . . . . . . . . 12  |-  ( x  i^i  y )  C_  x
15 ssralv 3085 . . . . . . . . . . . 12  |-  ( ( x  i^i  y ) 
C_  x  ->  ( A. k  e.  x  ph 
->  A. k  e.  ( x  i^i  y )
ph ) )
1614, 15ax-mp 7 . . . . . . . . . . 11  |-  ( A. k  e.  x  ph  ->  A. k  e.  ( x  i^i  y )
ph )
17 inss2 3221 . . . . . . . . . . . 12  |-  ( x  i^i  y )  C_  y
18 ssralv 3085 . . . . . . . . . . . 12  |-  ( ( x  i^i  y ) 
C_  y  ->  ( A. k  e.  y  ps  ->  A. k  e.  ( x  i^i  y ) ps ) )
1917, 18ax-mp 7 . . . . . . . . . . 11  |-  ( A. k  e.  y  ps  ->  A. k  e.  ( x  i^i  y ) ps )
2016, 19anim12i 331 . . . . . . . . . 10  |-  ( ( A. k  e.  x  ph 
/\  A. k  e.  y  ps )  ->  ( A. k  e.  (
x  i^i  y ) ph  /\  A. k  e.  ( x  i^i  y
) ps ) )
21 r19.26 2497 . . . . . . . . . 10  |-  ( A. k  e.  ( x  i^i  y ) ( ph  /\ 
ps )  <->  ( A. k  e.  ( x  i^i  y ) ph  /\  A. k  e.  ( x  i^i  y ) ps ) )
2220, 21sylibr 132 . . . . . . . . 9  |-  ( ( A. k  e.  x  ph 
/\  A. k  e.  y  ps )  ->  A. k  e.  ( x  i^i  y
) ( ph  /\  ps ) )
23 raleq 2562 . . . . . . . . . 10  |-  ( z  =  ( x  i^i  y )  ->  ( A. k  e.  z 
( ph  /\  ps )  <->  A. k  e.  ( x  i^i  y ) (
ph  /\  ps )
) )
2423rspcev 2722 . . . . . . . . 9  |-  ( ( ( x  i^i  y
)  e.  ran  ZZ>=  /\  A. k  e.  ( x  i^i  y ) (
ph  /\  ps )
)  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) )
2513, 22, 24syl2an 283 . . . . . . . 8  |-  ( ( ( x  e.  ran  ZZ>=  /\  y  e.  ran  ZZ>= )  /\  ( A. k  e.  x  ph  /\  A. k  e.  y  ps ) )  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) )
2625an4s 555 . . . . . . 7  |-  ( ( ( x  e.  ran  ZZ>=  /\ 
A. k  e.  x  ph )  /\  ( y  e.  ran  ZZ>=  /\  A. k  e.  y  ps ) )  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) )
2726rexlimdvaa 2490 . . . . . 6  |-  ( ( x  e.  ran  ZZ>=  /\  A. k  e.  x  ph )  ->  ( E. y  e.  ran  ZZ>= A. k  e.  y  ps  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) ) )
2827rexlimiva 2484 . . . . 5  |-  ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  ->  ( E. y  e. 
ran  ZZ>= A. k  e.  y  ps  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) ) )
2928imp 122 . . . 4  |-  ( ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  /\ 
E. y  e.  ran  ZZ>= A. k  e.  y  ps )  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) )
30 raleq 2562 . . . . . 6  |-  ( z  =  ( ZZ>= `  j
)  ->  ( A. k  e.  z  ( ph  /\  ps )  <->  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
) )
3130rexrn 5436 . . . . 5  |-  ( ZZ>=  Fn  ZZ  ->  ( E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\ 
ps )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
) )
325, 6, 31mp2b 8 . . . 4  |-  ( E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
)
3329, 32sylib 120 . . 3  |-  ( ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  /\ 
E. y  e.  ran  ZZ>= A. k  e.  y  ps )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
)
349, 12, 33syl2anbr 286 . 2  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps ) )
354, 34impbii 124 1  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1438   A.wral 2359   E.wrex 2360    i^i cin 2998    C_ wss 2999   ~Pcpw 3429   ran crn 4439    Fn wfn 5010   -->wf 5011   ` cfv 5015   ZZcz 8750   ZZ>=cuz 9019
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-addcom 7445  ax-addass 7447  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-0id 7453  ax-rnegex 7454  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459  ax-pre-apti 7460  ax-pre-ltadd 7461
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-inn 8423  df-n0 8674  df-z 8751  df-uz 9020
This theorem is referenced by:  rexfiuz  10422  rexuz3  10423  rexanuz2  10424
  Copyright terms: Public domain W3C validator