Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexanuz | Unicode version |
Description: Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.) |
Ref | Expression |
---|---|
rexanuz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.26 2592 | . . . 4 | |
2 | 1 | rexbii 2473 | . . 3 |
3 | r19.40 2620 | . . 3 | |
4 | 2, 3 | sylbi 120 | . 2 |
5 | uzf 9469 | . . . 4 | |
6 | ffn 5337 | . . . 4 | |
7 | raleq 2661 | . . . . 5 | |
8 | 7 | rexrn 5622 | . . . 4 |
9 | 5, 6, 8 | mp2b 8 | . . 3 |
10 | raleq 2661 | . . . . 5 | |
11 | 10 | rexrn 5622 | . . . 4 |
12 | 5, 6, 11 | mp2b 8 | . . 3 |
13 | uzin2 10929 | . . . . . . . . 9 | |
14 | inss1 3342 | . . . . . . . . . . . 12 | |
15 | ssralv 3206 | . . . . . . . . . . . 12 | |
16 | 14, 15 | ax-mp 5 | . . . . . . . . . . 11 |
17 | inss2 3343 | . . . . . . . . . . . 12 | |
18 | ssralv 3206 | . . . . . . . . . . . 12 | |
19 | 17, 18 | ax-mp 5 | . . . . . . . . . . 11 |
20 | 16, 19 | anim12i 336 | . . . . . . . . . 10 |
21 | r19.26 2592 | . . . . . . . . . 10 | |
22 | 20, 21 | sylibr 133 | . . . . . . . . 9 |
23 | raleq 2661 | . . . . . . . . . 10 | |
24 | 23 | rspcev 2830 | . . . . . . . . 9 |
25 | 13, 22, 24 | syl2an 287 | . . . . . . . 8 |
26 | 25 | an4s 578 | . . . . . . 7 |
27 | 26 | rexlimdvaa 2584 | . . . . . 6 |
28 | 27 | rexlimiva 2578 | . . . . 5 |
29 | 28 | imp 123 | . . . 4 |
30 | raleq 2661 | . . . . . 6 | |
31 | 30 | rexrn 5622 | . . . . 5 |
32 | 5, 6, 31 | mp2b 8 | . . . 4 |
33 | 29, 32 | sylib 121 | . . 3 |
34 | 9, 12, 33 | syl2anbr 290 | . 2 |
35 | 4, 34 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2136 wral 2444 wrex 2445 cin 3115 wss 3116 cpw 3559 crn 4605 wfn 5183 wf 5184 cfv 5188 cz 9191 cuz 9466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 |
This theorem is referenced by: rexfiuz 10931 rexuz3 10932 rexanuz2 10933 |
Copyright terms: Public domain | W3C validator |