| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralbiim | Unicode version | ||
| Description: Split a biconditional and distribute quantifier. (Contributed by NM, 3-Jun-2012.) |
| Ref | Expression |
|---|---|
| ralbiim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 388 |
. . 3
| |
| 2 | 1 | ralbii 2503 |
. 2
|
| 3 | r19.26 2623 |
. 2
| |
| 4 | 2, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: eqreu 2956 |
| Copyright terms: Public domain | W3C validator |