Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralbiim | Unicode version |
Description: Split a biconditional and distribute quantifier. (Contributed by NM, 3-Jun-2012.) |
Ref | Expression |
---|---|
ralbiim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi2 386 | . . 3 | |
2 | 1 | ralbii 2476 | . 2 |
3 | r19.26 2596 | . 2 | |
4 | 2, 3 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-ral 2453 |
This theorem is referenced by: eqreu 2922 |
Copyright terms: Public domain | W3C validator |