ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralbiim Unicode version

Theorem ralbiim 2600
Description: Split a biconditional and distribute quantifier. (Contributed by NM, 3-Jun-2012.)
Assertion
Ref Expression
ralbiim  |-  ( A. x  e.  A  ( ph 
<->  ps )  <->  ( A. x  e.  A  ( ph  ->  ps )  /\  A. x  e.  A  ( ps  ->  ph ) ) )

Proof of Theorem ralbiim
StepHypRef Expression
1 dfbi2 386 . . 3  |-  ( (
ph 
<->  ps )  <->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )
21ralbii 2472 . 2  |-  ( A. x  e.  A  ( ph 
<->  ps )  <->  A. x  e.  A  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )
3 r19.26 2592 . 2  |-  ( A. x  e.  A  (
( ph  ->  ps )  /\  ( ps  ->  ph )
)  <->  ( A. x  e.  A  ( ph  ->  ps )  /\  A. x  e.  A  ( ps  ->  ph ) ) )
42, 3bitri 183 1  |-  ( A. x  e.  A  ( ph 
<->  ps )  <->  ( A. x  e.  A  ( ph  ->  ps )  /\  A. x  e.  A  ( ps  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-ral 2449
This theorem is referenced by:  eqreu  2918
  Copyright terms: Public domain W3C validator