| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexbi | Unicode version | ||
| Description: Distribute a restricted existential quantifier over a biconditional. Theorem 19.18 of [Margaris] p. 90 with restricted quantification. (Contributed by Jim Kingdon, 21-Jan-2019.) |
| Ref | Expression |
|---|---|
| rexbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra1 2536 |
. 2
| |
| 2 | rsp 2552 |
. . 3
| |
| 3 | 2 | imp 124 |
. 2
|
| 4 | 1, 3 | rexbida 2500 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-ral 2488 df-rex 2489 |
| This theorem is referenced by: rexrnmpo 6060 |
| Copyright terms: Public domain | W3C validator |