Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexbi | Unicode version |
Description: Distribute a restricted existential quantifier over a biconditional. Theorem 19.18 of [Margaris] p. 90 with restricted quantification. (Contributed by Jim Kingdon, 21-Jan-2019.) |
Ref | Expression |
---|---|
rexbi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra1 2488 | . 2 | |
2 | rsp 2504 | . . 3 | |
3 | 2 | imp 123 | . 2 |
4 | 1, 3 | rexbida 2452 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wcel 2128 wral 2435 wrex 2436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-ral 2440 df-rex 2441 |
This theorem is referenced by: rexrnmpo 5936 |
Copyright terms: Public domain | W3C validator |