ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralbiim GIF version

Theorem ralbiim 2600
Description: Split a biconditional and distribute quantifier. (Contributed by NM, 3-Jun-2012.)
Assertion
Ref Expression
ralbiim (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 (𝜑𝜓) ∧ ∀𝑥𝐴 (𝜓𝜑)))

Proof of Theorem ralbiim
StepHypRef Expression
1 dfbi2 386 . . 3 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
21ralbii 2472 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴 ((𝜑𝜓) ∧ (𝜓𝜑)))
3 r19.26 2592 . 2 (∀𝑥𝐴 ((𝜑𝜓) ∧ (𝜓𝜑)) ↔ (∀𝑥𝐴 (𝜑𝜓) ∧ ∀𝑥𝐴 (𝜓𝜑)))
42, 3bitri 183 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 (𝜑𝜓) ∧ ∀𝑥𝐴 (𝜓𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-ral 2449
This theorem is referenced by:  eqreu  2918
  Copyright terms: Public domain W3C validator