ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqreu Unicode version

Theorem eqreu 2922
Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypothesis
Ref Expression
eqreu.1  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
eqreu  |-  ( ( B  e.  A  /\  ps  /\  A. x  e.  A  ( ph  ->  x  =  B ) )  ->  E! x  e.  A  ph )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem eqreu
StepHypRef Expression
1 ralbiim 2604 . . . . 5  |-  ( A. x  e.  A  ( ph 
<->  x  =  B )  <-> 
( A. x  e.  A  ( ph  ->  x  =  B )  /\  A. x  e.  A  ( x  =  B  ->  ph ) ) )
2 eqreu.1 . . . . . . 7  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
32ceqsralv 2761 . . . . . 6  |-  ( B  e.  A  ->  ( A. x  e.  A  ( x  =  B  ->  ph )  <->  ps )
)
43anbi2d 461 . . . . 5  |-  ( B  e.  A  ->  (
( A. x  e.  A  ( ph  ->  x  =  B )  /\  A. x  e.  A  ( x  =  B  ->  ph ) )  <->  ( A. x  e.  A  ( ph  ->  x  =  B )  /\  ps )
) )
51, 4syl5bb 191 . . . 4  |-  ( B  e.  A  ->  ( A. x  e.  A  ( ph  <->  x  =  B
)  <->  ( A. x  e.  A  ( ph  ->  x  =  B )  /\  ps ) ) )
6 reu6i 2921 . . . . 5  |-  ( ( B  e.  A  /\  A. x  e.  A  (
ph 
<->  x  =  B ) )  ->  E! x  e.  A  ph )
76ex 114 . . . 4  |-  ( B  e.  A  ->  ( A. x  e.  A  ( ph  <->  x  =  B
)  ->  E! x  e.  A  ph ) )
85, 7sylbird 169 . . 3  |-  ( B  e.  A  ->  (
( A. x  e.  A  ( ph  ->  x  =  B )  /\  ps )  ->  E! x  e.  A  ph ) )
983impib 1196 . 2  |-  ( ( B  e.  A  /\  A. x  e.  A  (
ph  ->  x  =  B )  /\  ps )  ->  E! x  e.  A  ph )
1093com23 1204 1  |-  ( ( B  e.  A  /\  ps  /\  A. x  e.  A  ( ph  ->  x  =  B ) )  ->  E! x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   E!wreu 2450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-v 2732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator