Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqreu | Unicode version |
Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
eqreu.1 |
Ref | Expression |
---|---|
eqreu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbiim 2604 | . . . . 5 | |
2 | eqreu.1 | . . . . . . 7 | |
3 | 2 | ceqsralv 2761 | . . . . . 6 |
4 | 3 | anbi2d 461 | . . . . 5 |
5 | 1, 4 | syl5bb 191 | . . . 4 |
6 | reu6i 2921 | . . . . 5 | |
7 | 6 | ex 114 | . . . 4 |
8 | 5, 7 | sylbird 169 | . . 3 |
9 | 8 | 3impib 1196 | . 2 |
10 | 9 | 3com23 1204 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 wreu 2450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-v 2732 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |