Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqreu | Unicode version |
Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
eqreu.1 |
Ref | Expression |
---|---|
eqreu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbiim 2588 | . . . . 5 | |
2 | eqreu.1 | . . . . . . 7 | |
3 | 2 | ceqsralv 2740 | . . . . . 6 |
4 | 3 | anbi2d 460 | . . . . 5 |
5 | 1, 4 | syl5bb 191 | . . . 4 |
6 | reu6i 2899 | . . . . 5 | |
7 | 6 | ex 114 | . . . 4 |
8 | 5, 7 | sylbird 169 | . . 3 |
9 | 8 | 3impib 1180 | . 2 |
10 | 9 | 3com23 1188 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1332 wcel 2125 wral 2432 wreu 2434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-reu 2439 df-v 2711 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |