ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqreu Unicode version

Theorem eqreu 2918
Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypothesis
Ref Expression
eqreu.1  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
eqreu  |-  ( ( B  e.  A  /\  ps  /\  A. x  e.  A  ( ph  ->  x  =  B ) )  ->  E! x  e.  A  ph )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem eqreu
StepHypRef Expression
1 ralbiim 2600 . . . . 5  |-  ( A. x  e.  A  ( ph 
<->  x  =  B )  <-> 
( A. x  e.  A  ( ph  ->  x  =  B )  /\  A. x  e.  A  ( x  =  B  ->  ph ) ) )
2 eqreu.1 . . . . . . 7  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
32ceqsralv 2757 . . . . . 6  |-  ( B  e.  A  ->  ( A. x  e.  A  ( x  =  B  ->  ph )  <->  ps )
)
43anbi2d 460 . . . . 5  |-  ( B  e.  A  ->  (
( A. x  e.  A  ( ph  ->  x  =  B )  /\  A. x  e.  A  ( x  =  B  ->  ph ) )  <->  ( A. x  e.  A  ( ph  ->  x  =  B )  /\  ps )
) )
51, 4syl5bb 191 . . . 4  |-  ( B  e.  A  ->  ( A. x  e.  A  ( ph  <->  x  =  B
)  <->  ( A. x  e.  A  ( ph  ->  x  =  B )  /\  ps ) ) )
6 reu6i 2917 . . . . 5  |-  ( ( B  e.  A  /\  A. x  e.  A  (
ph 
<->  x  =  B ) )  ->  E! x  e.  A  ph )
76ex 114 . . . 4  |-  ( B  e.  A  ->  ( A. x  e.  A  ( ph  <->  x  =  B
)  ->  E! x  e.  A  ph ) )
85, 7sylbird 169 . . 3  |-  ( B  e.  A  ->  (
( A. x  e.  A  ( ph  ->  x  =  B )  /\  ps )  ->  E! x  e.  A  ph ) )
983impib 1191 . 2  |-  ( ( B  e.  A  /\  A. x  e.  A  (
ph  ->  x  =  B )  /\  ps )  ->  E! x  e.  A  ph )
1093com23 1199 1  |-  ( ( B  e.  A  /\  ps  /\  A. x  e.  A  ( ph  ->  x  =  B ) )  ->  E! x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2444   E!wreu 2446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-v 2728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator