| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralexim | Unicode version | ||
| Description: Relationship between restricted universal and existential quantifiers. (Contributed by Jim Kingdon, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| ralexim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexnalim 2494 |
. 2
| |
| 2 | 1 | con2i 628 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-fal 1378 df-nf 1483 df-ral 2488 df-rex 2489 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |