ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralexim Unicode version

Theorem ralexim 2479
Description: Relationship between restricted universal and existential quantifiers. (Contributed by Jim Kingdon, 17-Aug-2018.)
Assertion
Ref Expression
ralexim  |-  ( A. x  e.  A  ph  ->  -. 
E. x  e.  A  -.  ph )

Proof of Theorem ralexim
StepHypRef Expression
1 rexnalim 2476 . 2  |-  ( E. x  e.  A  -.  ph 
->  -.  A. x  e.  A  ph )
21con2i 628 1  |-  ( A. x  e.  A  ph  ->  -. 
E. x  e.  A  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wral 2465   E.wrex 2466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1457  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-4 1520  ax-17 1536  ax-ial 1544
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-fal 1369  df-nf 1471  df-ral 2470  df-rex 2471
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator