| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfrex2dc | Unicode version | ||
| Description: Relationship between restricted universal and existential quantifiers. (Contributed by Jim Kingdon, 29-Jun-2022.) |
| Ref | Expression |
|---|---|
| dfrex2dc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2514 |
. . . 4
| |
| 2 | 1 | dcbii 845 |
. . 3
|
| 3 | dfexdc 1547 |
. . 3
| |
| 4 | 2, 3 | sylbi 121 |
. 2
|
| 5 | df-ral 2513 |
. . . 4
| |
| 6 | imnan 694 |
. . . . 5
| |
| 7 | 6 | albii 1516 |
. . . 4
|
| 8 | 5, 7 | bitri 184 |
. . 3
|
| 9 | 8 | notbii 672 |
. 2
|
| 10 | 4, 1, 9 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-gen 1495 ax-ie2 1540 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-tru 1398 df-fal 1401 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: dfrex2fin 7061 exmidomniim 7304 |
| Copyright terms: Public domain | W3C validator |