ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrex2dc Unicode version

Theorem dfrex2dc 2457
Description: Relationship between restricted universal and existential quantifiers. (Contributed by Jim Kingdon, 29-Jun-2022.)
Assertion
Ref Expression
dfrex2dc  |-  (DECID  E. x  e.  A  ph  ->  ( E. x  e.  A  ph  <->  -. 
A. x  e.  A  -.  ph ) )

Proof of Theorem dfrex2dc
StepHypRef Expression
1 df-rex 2450 . . . 4  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
21dcbii 830 . . 3  |-  (DECID  E. x  e.  A  ph  <-> DECID  E. x ( x  e.  A  /\  ph ) )
3 dfexdc 1489 . . 3  |-  (DECID  E. x
( x  e.  A  /\  ph )  ->  ( E. x ( x  e.  A  /\  ph )  <->  -. 
A. x  -.  (
x  e.  A  /\  ph ) ) )
42, 3sylbi 120 . 2  |-  (DECID  E. x  e.  A  ph  ->  ( E. x ( x  e.  A  /\  ph )  <->  -. 
A. x  -.  (
x  e.  A  /\  ph ) ) )
5 df-ral 2449 . . . 4  |-  ( A. x  e.  A  -.  ph  <->  A. x ( x  e.  A  ->  -.  ph )
)
6 imnan 680 . . . . 5  |-  ( ( x  e.  A  ->  -.  ph )  <->  -.  (
x  e.  A  /\  ph ) )
76albii 1458 . . . 4  |-  ( A. x ( x  e.  A  ->  -.  ph )  <->  A. x  -.  ( x  e.  A  /\  ph ) )
85, 7bitri 183 . . 3  |-  ( A. x  e.  A  -.  ph  <->  A. x  -.  ( x  e.  A  /\  ph ) )
98notbii 658 . 2  |-  ( -. 
A. x  e.  A  -.  ph  <->  -.  A. x  -.  ( x  e.  A  /\  ph ) )
104, 1, 93bitr4g 222 1  |-  (DECID  E. x  e.  A  ph  ->  ( E. x  e.  A  ph  <->  -. 
A. x  e.  A  -.  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 824   A.wal 1341   E.wex 1480    e. wcel 2136   A.wral 2444   E.wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-gen 1437  ax-ie2 1482
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-fal 1349  df-ral 2449  df-rex 2450
This theorem is referenced by:  dfrex2fin  6869  exmidomniim  7105
  Copyright terms: Public domain W3C validator