ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrex2dc Unicode version

Theorem dfrex2dc 2468
Description: Relationship between restricted universal and existential quantifiers. (Contributed by Jim Kingdon, 29-Jun-2022.)
Assertion
Ref Expression
dfrex2dc  |-  (DECID  E. x  e.  A  ph  ->  ( E. x  e.  A  ph  <->  -. 
A. x  e.  A  -.  ph ) )

Proof of Theorem dfrex2dc
StepHypRef Expression
1 df-rex 2461 . . . 4  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
21dcbii 840 . . 3  |-  (DECID  E. x  e.  A  ph  <-> DECID  E. x ( x  e.  A  /\  ph ) )
3 dfexdc 1501 . . 3  |-  (DECID  E. x
( x  e.  A  /\  ph )  ->  ( E. x ( x  e.  A  /\  ph )  <->  -. 
A. x  -.  (
x  e.  A  /\  ph ) ) )
42, 3sylbi 121 . 2  |-  (DECID  E. x  e.  A  ph  ->  ( E. x ( x  e.  A  /\  ph )  <->  -. 
A. x  -.  (
x  e.  A  /\  ph ) ) )
5 df-ral 2460 . . . 4  |-  ( A. x  e.  A  -.  ph  <->  A. x ( x  e.  A  ->  -.  ph )
)
6 imnan 690 . . . . 5  |-  ( ( x  e.  A  ->  -.  ph )  <->  -.  (
x  e.  A  /\  ph ) )
76albii 1470 . . . 4  |-  ( A. x ( x  e.  A  ->  -.  ph )  <->  A. x  -.  ( x  e.  A  /\  ph ) )
85, 7bitri 184 . . 3  |-  ( A. x  e.  A  -.  ph  <->  A. x  -.  ( x  e.  A  /\  ph ) )
98notbii 668 . 2  |-  ( -. 
A. x  e.  A  -.  ph  <->  -.  A. x  -.  ( x  e.  A  /\  ph ) )
104, 1, 93bitr4g 223 1  |-  (DECID  E. x  e.  A  ph  ->  ( E. x  e.  A  ph  <->  -. 
A. x  e.  A  -.  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 834   A.wal 1351   E.wex 1492    e. wcel 2148   A.wral 2455   E.wrex 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-gen 1449  ax-ie2 1494
This theorem depends on definitions:  df-bi 117  df-dc 835  df-tru 1356  df-fal 1359  df-ral 2460  df-rex 2461
This theorem is referenced by:  dfrex2fin  6905  exmidomniim  7141
  Copyright terms: Public domain W3C validator