| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexnalim | Unicode version | ||
| Description: Relationship between restricted universal and existential quantifiers. In classical logic this would be a biconditional. (Contributed by Jim Kingdon, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| rexnalim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2490 |
. 2
| |
| 2 | exanaliim 1670 |
. . 3
| |
| 3 | df-ral 2489 |
. . 3
| |
| 4 | 2, 3 | sylnibr 679 |
. 2
|
| 5 | 1, 4 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1484 df-ral 2489 df-rex 2490 |
| This theorem is referenced by: nnral 2496 ralexim 2498 iundif2ss 3993 ixp0 6818 omniwomnimkv 7269 alzdvds 12165 pc2dvds 12653 isnsgrp 13238 nninfsellemeq 15951 |
| Copyright terms: Public domain | W3C validator |