ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexnalim Unicode version

Theorem rexnalim 2466
Description: Relationship between restricted universal and existential quantifiers. In classical logic this would be a biconditional. (Contributed by Jim Kingdon, 17-Aug-2018.)
Assertion
Ref Expression
rexnalim  |-  ( E. x  e.  A  -.  ph 
->  -.  A. x  e.  A  ph )

Proof of Theorem rexnalim
StepHypRef Expression
1 df-rex 2461 . 2  |-  ( E. x  e.  A  -.  ph  <->  E. x ( x  e.  A  /\  -.  ph ) )
2 exanaliim 1647 . . 3  |-  ( E. x ( x  e.  A  /\  -.  ph )  ->  -.  A. x
( x  e.  A  ->  ph ) )
3 df-ral 2460 . . 3  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
42, 3sylnibr 677 . 2  |-  ( E. x ( x  e.  A  /\  -.  ph )  ->  -.  A. x  e.  A  ph )
51, 4sylbi 121 1  |-  ( E. x  e.  A  -.  ph 
->  -.  A. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wal 1351   E.wex 1492    e. wcel 2148   A.wral 2455   E.wrex 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-ral 2460  df-rex 2461
This theorem is referenced by:  nnral  2467  ralexim  2469  iundif2ss  3954  ixp0  6733  omniwomnimkv  7167  alzdvds  11862  pc2dvds  12331  isnsgrp  12817  nninfsellemeq  14848
  Copyright terms: Public domain W3C validator