ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexnalim Unicode version

Theorem rexnalim 2519
Description: Relationship between restricted universal and existential quantifiers. In classical logic this would be a biconditional. (Contributed by Jim Kingdon, 17-Aug-2018.)
Assertion
Ref Expression
rexnalim  |-  ( E. x  e.  A  -.  ph 
->  -.  A. x  e.  A  ph )

Proof of Theorem rexnalim
StepHypRef Expression
1 df-rex 2514 . 2  |-  ( E. x  e.  A  -.  ph  <->  E. x ( x  e.  A  /\  -.  ph ) )
2 exanaliim 1693 . . 3  |-  ( E. x ( x  e.  A  /\  -.  ph )  ->  -.  A. x
( x  e.  A  ->  ph ) )
3 df-ral 2513 . . 3  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
42, 3sylnibr 681 . 2  |-  ( E. x ( x  e.  A  /\  -.  ph )  ->  -.  A. x  e.  A  ph )
51, 4sylbi 121 1  |-  ( E. x  e.  A  -.  ph 
->  -.  A. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wal 1393   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-ral 2513  df-rex 2514
This theorem is referenced by:  nnral  2520  ralexim  2522  rexanaliim  2636  iundif2ss  4031  ixp0  6878  omniwomnimkv  7334  alzdvds  12365  pc2dvds  12853  isnsgrp  13439  umgr2edg1  16007  umgr2edgneu  16010  nninfsellemeq  16380
  Copyright terms: Public domain W3C validator