ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimd Unicode version

Theorem ralrimd 2532
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 16-Feb-2004.)
Hypotheses
Ref Expression
ralrimd.1  |-  F/ x ph
ralrimd.2  |-  F/ x ps
ralrimd.3  |-  ( ph  ->  ( ps  ->  (
x  e.  A  ->  ch ) ) )
Assertion
Ref Expression
ralrimd  |-  ( ph  ->  ( ps  ->  A. x  e.  A  ch )
)

Proof of Theorem ralrimd
StepHypRef Expression
1 ralrimd.1 . . 3  |-  F/ x ph
2 ralrimd.2 . . 3  |-  F/ x ps
3 ralrimd.3 . . 3  |-  ( ph  ->  ( ps  ->  (
x  e.  A  ->  ch ) ) )
41, 2, 3alrimd 1587 . 2  |-  ( ph  ->  ( ps  ->  A. x
( x  e.  A  ->  ch ) ) )
5 df-ral 2437 . 2  |-  ( A. x  e.  A  ch  <->  A. x ( x  e.  A  ->  ch )
)
64, 5syl6ibr 161 1  |-  ( ph  ->  ( ps  ->  A. x  e.  A  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1330   F/wnf 1437    e. wcel 2125   A.wral 2432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-gen 1426  ax-4 1487
This theorem depends on definitions:  df-bi 116  df-nf 1438  df-ral 2437
This theorem is referenced by:  ralrimdv  2533  fliftfun  5737  mapxpen  6782  fzrevral  9985
  Copyright terms: Public domain W3C validator