| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapxpen | Unicode version | ||
| Description: Equinumerosity law for double set exponentiation. Proposition 10.45 of [TakeutiZaring] p. 96. (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| mapxpen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmap 6714 |
. . 3
| |
| 2 | elex 2774 |
. . . . 5
| |
| 3 | 2 | 3ad2ant1 1020 |
. . . 4
|
| 4 | elex 2774 |
. . . . 5
| |
| 5 | 4 | 3ad2ant2 1021 |
. . . 4
|
| 6 | fnovex 5955 |
. . . 4
| |
| 7 | 1, 3, 5, 6 | mp3an2i 1353 |
. . 3
|
| 8 | elex 2774 |
. . . 4
| |
| 9 | 8 | 3ad2ant3 1022 |
. . 3
|
| 10 | fnovex 5955 |
. . 3
| |
| 11 | 1, 7, 9, 10 | mp3an2i 1353 |
. 2
|
| 12 | xpexg 4777 |
. . . 4
| |
| 13 | 12 | 3adant1 1017 |
. . 3
|
| 14 | fnovex 5955 |
. . 3
| |
| 15 | 1, 3, 13, 14 | mp3an2i 1353 |
. 2
|
| 16 | elmapi 6729 |
. . . . . . . . . 10
| |
| 17 | 16 | ffvelcdmda 5697 |
. . . . . . . . 9
|
| 18 | elmapi 6729 |
. . . . . . . . 9
| |
| 19 | 17, 18 | syl 14 |
. . . . . . . 8
|
| 20 | 19 | ffvelcdmda 5697 |
. . . . . . 7
|
| 21 | 20 | an32s 568 |
. . . . . 6
|
| 22 | 21 | ralrimiva 2570 |
. . . . 5
|
| 23 | 22 | ralrimiva 2570 |
. . . 4
|
| 24 | eqid 2196 |
. . . . 5
| |
| 25 | 24 | fmpo 6259 |
. . . 4
|
| 26 | 23, 25 | sylib 122 |
. . 3
|
| 27 | simp1 999 |
. . . 4
| |
| 28 | 27, 13 | elmapd 6721 |
. . 3
|
| 29 | 26, 28 | imbitrrid 156 |
. 2
|
| 30 | elmapi 6729 |
. . . . . . . . 9
| |
| 31 | 30 | adantl 277 |
. . . . . . . 8
|
| 32 | fovcdm 6066 |
. . . . . . . . . 10
| |
| 33 | 32 | 3expa 1205 |
. . . . . . . . 9
|
| 34 | 33 | an32s 568 |
. . . . . . . 8
|
| 35 | 31, 34 | sylanl1 402 |
. . . . . . 7
|
| 36 | eqid 2196 |
. . . . . . 7
| |
| 37 | 35, 36 | fmptd 5716 |
. . . . . 6
|
| 38 | elmapg 6720 |
. . . . . . . 8
| |
| 39 | 38 | 3adant3 1019 |
. . . . . . 7
|
| 40 | 39 | ad2antrr 488 |
. . . . . 6
|
| 41 | 37, 40 | mpbird 167 |
. . . . 5
|
| 42 | eqid 2196 |
. . . . 5
| |
| 43 | 41, 42 | fmptd 5716 |
. . . 4
|
| 44 | 43 | ex 115 |
. . 3
|
| 45 | simp3 1001 |
. . . 4
| |
| 46 | 7, 45 | elmapd 6721 |
. . 3
|
| 47 | 44, 46 | sylibrd 169 |
. 2
|
| 48 | elmapfn 6730 |
. . . . . . . 8
| |
| 49 | 48 | ad2antll 491 |
. . . . . . 7
|
| 50 | fnovim 6031 |
. . . . . . 7
| |
| 51 | 49, 50 | syl 14 |
. . . . . 6
|
| 52 | simp3 1001 |
. . . . . . . . . 10
| |
| 53 | 37 | adantlrl 482 |
. . . . . . . . . . . 12
|
| 54 | 53 | 3adant2 1018 |
. . . . . . . . . . 11
|
| 55 | simp1l2 1093 |
. . . . . . . . . . 11
| |
| 56 | simp1l1 1092 |
. . . . . . . . . . 11
| |
| 57 | fex2 5426 |
. . . . . . . . . . 11
| |
| 58 | 54, 55, 56, 57 | syl3anc 1249 |
. . . . . . . . . 10
|
| 59 | 42 | fvmpt2 5645 |
. . . . . . . . . 10
|
| 60 | 52, 58, 59 | syl2anc 411 |
. . . . . . . . 9
|
| 61 | 60 | fveq1d 5560 |
. . . . . . . 8
|
| 62 | simp2 1000 |
. . . . . . . . 9
| |
| 63 | vex 2766 |
. . . . . . . . . 10
| |
| 64 | vex 2766 |
. . . . . . . . . 10
| |
| 65 | vex 2766 |
. . . . . . . . . 10
| |
| 66 | ovexg 5956 |
. . . . . . . . . 10
| |
| 67 | 63, 64, 65, 66 | mp3an 1348 |
. . . . . . . . 9
|
| 68 | 36 | fvmpt2 5645 |
. . . . . . . . 9
|
| 69 | 62, 67, 68 | sylancl 413 |
. . . . . . . 8
|
| 70 | 61, 69 | eqtrd 2229 |
. . . . . . 7
|
| 71 | 70 | mpoeq3dva 5986 |
. . . . . 6
|
| 72 | 51, 71 | eqtr4d 2232 |
. . . . 5
|
| 73 | eqid 2196 |
. . . . . . 7
| |
| 74 | nfcv 2339 |
. . . . . . . . . 10
| |
| 75 | nfmpt1 4126 |
. . . . . . . . . 10
| |
| 76 | 74, 75 | nfmpt 4125 |
. . . . . . . . 9
|
| 77 | 76 | nfeq2 2351 |
. . . . . . . 8
|
| 78 | nfmpt1 4126 |
. . . . . . . . . . . 12
| |
| 79 | 78 | nfeq2 2351 |
. . . . . . . . . . 11
|
| 80 | fveq1 5557 |
. . . . . . . . . . . . 13
| |
| 81 | 80 | fveq1d 5560 |
. . . . . . . . . . . 12
|
| 82 | 81 | a1d 22 |
. . . . . . . . . . 11
|
| 83 | 79, 82 | ralrimi 2568 |
. . . . . . . . . 10
|
| 84 | eqid 2196 |
. . . . . . . . . 10
| |
| 85 | 83, 84 | jctil 312 |
. . . . . . . . 9
|
| 86 | 85 | a1d 22 |
. . . . . . . 8
|
| 87 | 77, 86 | ralrimi 2568 |
. . . . . . 7
|
| 88 | mpoeq123 5981 |
. . . . . . 7
| |
| 89 | 73, 87, 88 | sylancr 414 |
. . . . . 6
|
| 90 | 89 | eqeq2d 2208 |
. . . . 5
|
| 91 | 72, 90 | syl5ibrcom 157 |
. . . 4
|
| 92 | 16 | ad2antrl 490 |
. . . . . . 7
|
| 93 | 92 | feqmptd 5614 |
. . . . . 6
|
| 94 | simprl 529 |
. . . . . . . . 9
| |
| 95 | 94, 19 | sylan 283 |
. . . . . . . 8
|
| 96 | 95 | feqmptd 5614 |
. . . . . . 7
|
| 97 | 96 | mpteq2dva 4123 |
. . . . . 6
|
| 98 | 93, 97 | eqtrd 2229 |
. . . . 5
|
| 99 | nfmpo2 5990 |
. . . . . . . . 9
| |
| 100 | 99 | nfeq2 2351 |
. . . . . . . 8
|
| 101 | eqidd 2197 |
. . . . . . . . 9
| |
| 102 | nfmpo1 5989 |
. . . . . . . . . . 11
| |
| 103 | 102 | nfeq2 2351 |
. . . . . . . . . 10
|
| 104 | nfv 1542 |
. . . . . . . . . 10
| |
| 105 | vex 2766 |
. . . . . . . . . . . . . . 15
| |
| 106 | 105, 65 | fvex 5578 |
. . . . . . . . . . . . . 14
|
| 107 | 106, 63 | fvex 5578 |
. . . . . . . . . . . . 13
|
| 108 | 24 | ovmpt4g 6045 |
. . . . . . . . . . . . 13
|
| 109 | 107, 108 | mp3an3 1337 |
. . . . . . . . . . . 12
|
| 110 | oveq 5928 |
. . . . . . . . . . . . 13
| |
| 111 | 110 | eqeq1d 2205 |
. . . . . . . . . . . 12
|
| 112 | 109, 111 | imbitrrid 156 |
. . . . . . . . . . 11
|
| 113 | 112 | expcomd 1452 |
. . . . . . . . . 10
|
| 114 | 103, 104, 113 | ralrimd 2575 |
. . . . . . . . 9
|
| 115 | mpteq12 4116 |
. . . . . . . . 9
| |
| 116 | 101, 114, 115 | syl6an 1445 |
. . . . . . . 8
|
| 117 | 100, 116 | ralrimi 2568 |
. . . . . . 7
|
| 118 | mpteq12 4116 |
. . . . . . 7
| |
| 119 | 84, 117, 118 | sylancr 414 |
. . . . . 6
|
| 120 | 119 | eqeq2d 2208 |
. . . . 5
|
| 121 | 98, 120 | syl5ibrcom 157 |
. . . 4
|
| 122 | 91, 121 | impbid 129 |
. . 3
|
| 123 | 122 | ex 115 |
. 2
|
| 124 | 11, 15, 29, 47, 123 | en3d 6828 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-map 6709 df-en 6800 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |