Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mapxpen | Unicode version |
Description: Equinumerosity law for double set exponentiation. Proposition 10.45 of [TakeutiZaring] p. 96. (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
mapxpen |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmap 6621 | . . 3 | |
2 | elex 2737 | . . . . 5 | |
3 | 2 | 3ad2ant1 1008 | . . . 4 |
4 | elex 2737 | . . . . 5 | |
5 | 4 | 3ad2ant2 1009 | . . . 4 |
6 | fnovex 5875 | . . . 4 | |
7 | 1, 3, 5, 6 | mp3an2i 1332 | . . 3 |
8 | elex 2737 | . . . 4 | |
9 | 8 | 3ad2ant3 1010 | . . 3 |
10 | fnovex 5875 | . . 3 | |
11 | 1, 7, 9, 10 | mp3an2i 1332 | . 2 |
12 | xpexg 4718 | . . . 4 | |
13 | 12 | 3adant1 1005 | . . 3 |
14 | fnovex 5875 | . . 3 | |
15 | 1, 3, 13, 14 | mp3an2i 1332 | . 2 |
16 | elmapi 6636 | . . . . . . . . . 10 | |
17 | 16 | ffvelrnda 5620 | . . . . . . . . 9 |
18 | elmapi 6636 | . . . . . . . . 9 | |
19 | 17, 18 | syl 14 | . . . . . . . 8 |
20 | 19 | ffvelrnda 5620 | . . . . . . 7 |
21 | 20 | an32s 558 | . . . . . 6 |
22 | 21 | ralrimiva 2539 | . . . . 5 |
23 | 22 | ralrimiva 2539 | . . . 4 |
24 | eqid 2165 | . . . . 5 | |
25 | 24 | fmpo 6169 | . . . 4 |
26 | 23, 25 | sylib 121 | . . 3 |
27 | simp1 987 | . . . 4 | |
28 | 27, 13 | elmapd 6628 | . . 3 |
29 | 26, 28 | syl5ibr 155 | . 2 |
30 | elmapi 6636 | . . . . . . . . 9 | |
31 | 30 | adantl 275 | . . . . . . . 8 |
32 | fovrn 5984 | . . . . . . . . . 10 | |
33 | 32 | 3expa 1193 | . . . . . . . . 9 |
34 | 33 | an32s 558 | . . . . . . . 8 |
35 | 31, 34 | sylanl1 400 | . . . . . . 7 |
36 | eqid 2165 | . . . . . . 7 | |
37 | 35, 36 | fmptd 5639 | . . . . . 6 |
38 | elmapg 6627 | . . . . . . . 8 | |
39 | 38 | 3adant3 1007 | . . . . . . 7 |
40 | 39 | ad2antrr 480 | . . . . . 6 |
41 | 37, 40 | mpbird 166 | . . . . 5 |
42 | eqid 2165 | . . . . 5 | |
43 | 41, 42 | fmptd 5639 | . . . 4 |
44 | 43 | ex 114 | . . 3 |
45 | simp3 989 | . . . 4 | |
46 | 7, 45 | elmapd 6628 | . . 3 |
47 | 44, 46 | sylibrd 168 | . 2 |
48 | elmapfn 6637 | . . . . . . . 8 | |
49 | 48 | ad2antll 483 | . . . . . . 7 |
50 | fnovim 5950 | . . . . . . 7 | |
51 | 49, 50 | syl 14 | . . . . . 6 |
52 | simp3 989 | . . . . . . . . . 10 | |
53 | 37 | adantlrl 474 | . . . . . . . . . . . 12 |
54 | 53 | 3adant2 1006 | . . . . . . . . . . 11 |
55 | simp1l2 1081 | . . . . . . . . . . 11 | |
56 | simp1l1 1080 | . . . . . . . . . . 11 | |
57 | fex2 5356 | . . . . . . . . . . 11 | |
58 | 54, 55, 56, 57 | syl3anc 1228 | . . . . . . . . . 10 |
59 | 42 | fvmpt2 5569 | . . . . . . . . . 10 |
60 | 52, 58, 59 | syl2anc 409 | . . . . . . . . 9 |
61 | 60 | fveq1d 5488 | . . . . . . . 8 |
62 | simp2 988 | . . . . . . . . 9 | |
63 | vex 2729 | . . . . . . . . . 10 | |
64 | vex 2729 | . . . . . . . . . 10 | |
65 | vex 2729 | . . . . . . . . . 10 | |
66 | ovexg 5876 | . . . . . . . . . 10 | |
67 | 63, 64, 65, 66 | mp3an 1327 | . . . . . . . . 9 |
68 | 36 | fvmpt2 5569 | . . . . . . . . 9 |
69 | 62, 67, 68 | sylancl 410 | . . . . . . . 8 |
70 | 61, 69 | eqtrd 2198 | . . . . . . 7 |
71 | 70 | mpoeq3dva 5906 | . . . . . 6 |
72 | 51, 71 | eqtr4d 2201 | . . . . 5 |
73 | eqid 2165 | . . . . . . 7 | |
74 | nfcv 2308 | . . . . . . . . . 10 | |
75 | nfmpt1 4075 | . . . . . . . . . 10 | |
76 | 74, 75 | nfmpt 4074 | . . . . . . . . 9 |
77 | 76 | nfeq2 2320 | . . . . . . . 8 |
78 | nfmpt1 4075 | . . . . . . . . . . . 12 | |
79 | 78 | nfeq2 2320 | . . . . . . . . . . 11 |
80 | fveq1 5485 | . . . . . . . . . . . . 13 | |
81 | 80 | fveq1d 5488 | . . . . . . . . . . . 12 |
82 | 81 | a1d 22 | . . . . . . . . . . 11 |
83 | 79, 82 | ralrimi 2537 | . . . . . . . . . 10 |
84 | eqid 2165 | . . . . . . . . . 10 | |
85 | 83, 84 | jctil 310 | . . . . . . . . 9 |
86 | 85 | a1d 22 | . . . . . . . 8 |
87 | 77, 86 | ralrimi 2537 | . . . . . . 7 |
88 | mpoeq123 5901 | . . . . . . 7 | |
89 | 73, 87, 88 | sylancr 411 | . . . . . 6 |
90 | 89 | eqeq2d 2177 | . . . . 5 |
91 | 72, 90 | syl5ibrcom 156 | . . . 4 |
92 | 16 | ad2antrl 482 | . . . . . . 7 |
93 | 92 | feqmptd 5539 | . . . . . 6 |
94 | simprl 521 | . . . . . . . . 9 | |
95 | 94, 19 | sylan 281 | . . . . . . . 8 |
96 | 95 | feqmptd 5539 | . . . . . . 7 |
97 | 96 | mpteq2dva 4072 | . . . . . 6 |
98 | 93, 97 | eqtrd 2198 | . . . . 5 |
99 | nfmpo2 5910 | . . . . . . . . 9 | |
100 | 99 | nfeq2 2320 | . . . . . . . 8 |
101 | eqidd 2166 | . . . . . . . . 9 | |
102 | nfmpo1 5909 | . . . . . . . . . . 11 | |
103 | 102 | nfeq2 2320 | . . . . . . . . . 10 |
104 | nfv 1516 | . . . . . . . . . 10 | |
105 | vex 2729 | . . . . . . . . . . . . . . 15 | |
106 | 105, 65 | fvex 5506 | . . . . . . . . . . . . . 14 |
107 | 106, 63 | fvex 5506 | . . . . . . . . . . . . 13 |
108 | 24 | ovmpt4g 5964 | . . . . . . . . . . . . 13 |
109 | 107, 108 | mp3an3 1316 | . . . . . . . . . . . 12 |
110 | oveq 5848 | . . . . . . . . . . . . 13 | |
111 | 110 | eqeq1d 2174 | . . . . . . . . . . . 12 |
112 | 109, 111 | syl5ibr 155 | . . . . . . . . . . 11 |
113 | 112 | expcomd 1429 | . . . . . . . . . 10 |
114 | 103, 104, 113 | ralrimd 2544 | . . . . . . . . 9 |
115 | mpteq12 4065 | . . . . . . . . 9 | |
116 | 101, 114, 115 | syl6an 1422 | . . . . . . . 8 |
117 | 100, 116 | ralrimi 2537 | . . . . . . 7 |
118 | mpteq12 4065 | . . . . . . 7 | |
119 | 84, 117, 118 | sylancr 411 | . . . . . 6 |
120 | 119 | eqeq2d 2177 | . . . . 5 |
121 | 98, 120 | syl5ibrcom 156 | . . . 4 |
122 | 91, 121 | impbid 128 | . . 3 |
123 | 122 | ex 114 | . 2 |
124 | 11, 15, 29, 47, 123 | en3d 6735 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wral 2444 cvv 2726 class class class wbr 3982 cmpt 4043 cxp 4602 wfn 5183 wf 5184 cfv 5188 (class class class)co 5842 cmpo 5844 cmap 6614 cen 6704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-en 6707 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |