ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapxpen Unicode version

Theorem mapxpen 6805
Description: Equinumerosity law for double set exponentiation. Proposition 10.45 of [TakeutiZaring] p. 96. (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
mapxpen  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  ^m  B )  ^m  C
)  ~~  ( A  ^m  ( B  X.  C
) ) )

Proof of Theorem mapxpen
Dummy variables  f  g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6612 . . 3  |-  ^m  Fn  ( _V  X.  _V )
2 elex 2732 . . . . 5  |-  ( A  e.  V  ->  A  e.  _V )
323ad2ant1 1007 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  e.  _V )
4 elex 2732 . . . . 5  |-  ( B  e.  W  ->  B  e.  _V )
543ad2ant2 1008 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  e.  _V )
6 fnovex 5866 . . . 4  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  A  e.  _V  /\  B  e. 
_V )  ->  ( A  ^m  B )  e. 
_V )
71, 3, 5, 6mp3an2i 1331 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  B
)  e.  _V )
8 elex 2732 . . . 4  |-  ( C  e.  X  ->  C  e.  _V )
983ad2ant3 1009 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  e.  _V )
10 fnovex 5866 . . 3  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  ( A  ^m  B )  e. 
_V  /\  C  e.  _V )  ->  ( ( A  ^m  B )  ^m  C )  e. 
_V )
111, 7, 9, 10mp3an2i 1331 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  ^m  B )  ^m  C
)  e.  _V )
12 xpexg 4712 . . . 4  |-  ( ( B  e.  W  /\  C  e.  X )  ->  ( B  X.  C
)  e.  _V )
13123adant1 1004 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( B  X.  C
)  e.  _V )
14 fnovex 5866 . . 3  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  A  e.  _V  /\  ( B  X.  C )  e. 
_V )  ->  ( A  ^m  ( B  X.  C ) )  e. 
_V )
151, 3, 13, 14mp3an2i 1331 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  ( B  X.  C ) )  e.  _V )
16 elmapi 6627 . . . . . . . . . 10  |-  ( f  e.  ( ( A  ^m  B )  ^m  C )  ->  f : C --> ( A  ^m  B ) )
1716ffvelrnda 5614 . . . . . . . . 9  |-  ( ( f  e.  ( ( A  ^m  B )  ^m  C )  /\  y  e.  C )  ->  ( f `  y
)  e.  ( A  ^m  B ) )
18 elmapi 6627 . . . . . . . . 9  |-  ( ( f `  y )  e.  ( A  ^m  B )  ->  (
f `  y ) : B --> A )
1917, 18syl 14 . . . . . . . 8  |-  ( ( f  e.  ( ( A  ^m  B )  ^m  C )  /\  y  e.  C )  ->  ( f `  y
) : B --> A )
2019ffvelrnda 5614 . . . . . . 7  |-  ( ( ( f  e.  ( ( A  ^m  B
)  ^m  C )  /\  y  e.  C
)  /\  x  e.  B )  ->  (
( f `  y
) `  x )  e.  A )
2120an32s 558 . . . . . 6  |-  ( ( ( f  e.  ( ( A  ^m  B
)  ^m  C )  /\  x  e.  B
)  /\  y  e.  C )  ->  (
( f `  y
) `  x )  e.  A )
2221ralrimiva 2537 . . . . 5  |-  ( ( f  e.  ( ( A  ^m  B )  ^m  C )  /\  x  e.  B )  ->  A. y  e.  C  ( ( f `  y ) `  x
)  e.  A )
2322ralrimiva 2537 . . . 4  |-  ( f  e.  ( ( A  ^m  B )  ^m  C )  ->  A. x  e.  B  A. y  e.  C  ( (
f `  y ) `  x )  e.  A
)
24 eqid 2164 . . . . 5  |-  ( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `
 x ) )  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )
2524fmpo 6161 . . . 4  |-  ( A. x  e.  B  A. y  e.  C  (
( f `  y
) `  x )  e.  A  <->  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) ) : ( B  X.  C
) --> A )
2623, 25sylib 121 . . 3  |-  ( f  e.  ( ( A  ^m  B )  ^m  C )  ->  (
x  e.  B , 
y  e.  C  |->  ( ( f `  y
) `  x )
) : ( B  X.  C ) --> A )
27 simp1 986 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  e.  V )
2827, 13elmapd 6619 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  e.  ( A  ^m  ( B  X.  C ) )  <-> 
( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `  x
) ) : ( B  X.  C ) --> A ) )
2926, 28syl5ibr 155 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( f  e.  ( ( A  ^m  B
)  ^m  C )  ->  ( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `  x
) )  e.  ( A  ^m  ( B  X.  C ) ) ) )
30 elmapi 6627 . . . . . . . . 9  |-  ( g  e.  ( A  ^m  ( B  X.  C
) )  ->  g : ( B  X.  C ) --> A )
3130adantl 275 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) )  ->  g :
( B  X.  C
) --> A )
32 fovrn 5975 . . . . . . . . . 10  |-  ( ( g : ( B  X.  C ) --> A  /\  x  e.  B  /\  y  e.  C
)  ->  ( x
g y )  e.  A )
33323expa 1192 . . . . . . . . 9  |-  ( ( ( g : ( B  X.  C ) --> A  /\  x  e.  B )  /\  y  e.  C )  ->  (
x g y )  e.  A )
3433an32s 558 . . . . . . . 8  |-  ( ( ( g : ( B  X.  C ) --> A  /\  y  e.  C )  /\  x  e.  B )  ->  (
x g y )  e.  A )
3531, 34sylanl1 400 . . . . . . 7  |-  ( ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  g  e.  ( A  ^m  ( B  X.  C ) ) )  /\  y  e.  C )  /\  x  e.  B )  ->  (
x g y )  e.  A )
36 eqid 2164 . . . . . . 7  |-  ( x  e.  B  |->  ( x g y ) )  =  ( x  e.  B  |->  ( x g y ) )
3735, 36fmptd 5633 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  g  e.  ( A  ^m  ( B  X.  C ) ) )  /\  y  e.  C )  ->  (
x  e.  B  |->  ( x g y ) ) : B --> A )
38 elmapg 6618 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( x  e.  B  |->  ( x g y ) )  e.  ( A  ^m  B
)  <->  ( x  e.  B  |->  ( x g y ) ) : B --> A ) )
39383adant3 1006 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( x  e.  B  |->  ( x g y ) )  e.  ( A  ^m  B
)  <->  ( x  e.  B  |->  ( x g y ) ) : B --> A ) )
4039ad2antrr 480 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  g  e.  ( A  ^m  ( B  X.  C ) ) )  /\  y  e.  C )  ->  (
( x  e.  B  |->  ( x g y ) )  e.  ( A  ^m  B )  <-> 
( x  e.  B  |->  ( x g y ) ) : B --> A ) )
4137, 40mpbird 166 . . . . 5  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  g  e.  ( A  ^m  ( B  X.  C ) ) )  /\  y  e.  C )  ->  (
x  e.  B  |->  ( x g y ) )  e.  ( A  ^m  B ) )
42 eqid 2164 . . . . 5  |-  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )
4341, 42fmptd 5633 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) )  ->  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) : C --> ( A  ^m  B ) )
4443ex 114 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( g  e.  ( A  ^m  ( B  X.  C ) )  ->  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) : C --> ( A  ^m  B ) ) )
45 simp3 988 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  e.  X )
467, 45elmapd 6619 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  e.  ( ( A  ^m  B )  ^m  C )  <->  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) : C --> ( A  ^m  B ) ) )
4744, 46sylibrd 168 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( g  e.  ( A  ^m  ( B  X.  C ) )  ->  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  e.  ( ( A  ^m  B )  ^m  C ) ) )
48 elmapfn 6628 . . . . . . . 8  |-  ( g  e.  ( A  ^m  ( B  X.  C
) )  ->  g  Fn  ( B  X.  C
) )
4948ad2antll 483 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  g  Fn  ( B  X.  C
) )
50 fnovim 5941 . . . . . . 7  |-  ( g  Fn  ( B  X.  C )  ->  g  =  ( x  e.  B ,  y  e.  C  |->  ( x g y ) ) )
5149, 50syl 14 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  g  =  ( x  e.  B ,  y  e.  C  |->  ( x g y ) ) )
52 simp3 988 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  x  e.  B  /\  y  e.  C
)  ->  y  e.  C )
5337adantlrl 474 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  y  e.  C
)  ->  ( x  e.  B  |->  ( x g y ) ) : B --> A )
54533adant2 1005 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  x  e.  B  /\  y  e.  C
)  ->  ( x  e.  B  |->  ( x g y ) ) : B --> A )
55 simp1l2 1080 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  x  e.  B  /\  y  e.  C
)  ->  B  e.  W )
56 simp1l1 1079 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  x  e.  B  /\  y  e.  C
)  ->  A  e.  V )
57 fex2 5350 . . . . . . . . . . 11  |-  ( ( ( x  e.  B  |->  ( x g y ) ) : B --> A  /\  B  e.  W  /\  A  e.  V
)  ->  ( x  e.  B  |->  ( x g y ) )  e.  _V )
5854, 55, 56, 57syl3anc 1227 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  x  e.  B  /\  y  e.  C
)  ->  ( x  e.  B  |->  ( x g y ) )  e.  _V )
5942fvmpt2 5563 . . . . . . . . . 10  |-  ( ( y  e.  C  /\  ( x  e.  B  |->  ( x g y ) )  e.  _V )  ->  ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y )  =  ( x  e.  B  |->  ( x g y ) ) )
6052, 58, 59syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  x  e.  B  /\  y  e.  C
)  ->  ( (
y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y
)  =  ( x  e.  B  |->  ( x g y ) ) )
6160fveq1d 5482 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  x  e.  B  /\  y  e.  C
)  ->  ( (
( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y ) `  x
)  =  ( ( x  e.  B  |->  ( x g y ) ) `  x ) )
62 simp2 987 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  x  e.  B  /\  y  e.  C
)  ->  x  e.  B )
63 vex 2724 . . . . . . . . . 10  |-  x  e. 
_V
64 vex 2724 . . . . . . . . . 10  |-  g  e. 
_V
65 vex 2724 . . . . . . . . . 10  |-  y  e. 
_V
66 ovexg 5867 . . . . . . . . . 10  |-  ( ( x  e.  _V  /\  g  e.  _V  /\  y  e.  _V )  ->  (
x g y )  e.  _V )
6763, 64, 65, 66mp3an 1326 . . . . . . . . 9  |-  ( x g y )  e. 
_V
6836fvmpt2 5563 . . . . . . . . 9  |-  ( ( x  e.  B  /\  ( x g y )  e.  _V )  ->  ( ( x  e.  B  |->  ( x g y ) ) `  x )  =  ( x g y ) )
6962, 67, 68sylancl 410 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  x  e.  B  /\  y  e.  C
)  ->  ( (
x  e.  B  |->  ( x g y ) ) `  x )  =  ( x g y ) )
7061, 69eqtrd 2197 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  x  e.  B  /\  y  e.  C
)  ->  ( (
( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y ) `  x
)  =  ( x g y ) )
7170mpoeq3dva 5897 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  (
x  e.  B , 
y  e.  C  |->  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `
 y ) `  x ) )  =  ( x  e.  B ,  y  e.  C  |->  ( x g y ) ) )
7251, 71eqtr4d 2200 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  g  =  ( x  e.  B ,  y  e.  C  |->  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y
) `  x )
) )
73 eqid 2164 . . . . . . 7  |-  B  =  B
74 nfcv 2306 . . . . . . . . . 10  |-  F/_ x C
75 nfmpt1 4069 . . . . . . . . . 10  |-  F/_ x
( x  e.  B  |->  ( x g y ) )
7674, 75nfmpt 4068 . . . . . . . . 9  |-  F/_ x
( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )
7776nfeq2 2318 . . . . . . . 8  |-  F/ x  f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )
78 nfmpt1 4069 . . . . . . . . . . . 12  |-  F/_ y
( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )
7978nfeq2 2318 . . . . . . . . . . 11  |-  F/ y  f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )
80 fveq1 5479 . . . . . . . . . . . . 13  |-  ( f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  ->  ( f `  y )  =  ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y ) )
8180fveq1d 5482 . . . . . . . . . . . 12  |-  ( f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  ->  ( ( f `
 y ) `  x )  =  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `
 y ) `  x ) )
8281a1d 22 . . . . . . . . . . 11  |-  ( f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  ->  ( y  e.  C  ->  ( (
f `  y ) `  x )  =  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `
 y ) `  x ) ) )
8379, 82ralrimi 2535 . . . . . . . . . 10  |-  ( f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  ->  A. y  e.  C  ( ( f `  y ) `  x
)  =  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y ) `  x
) )
84 eqid 2164 . . . . . . . . . 10  |-  C  =  C
8583, 84jctil 310 . . . . . . . . 9  |-  ( f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  ->  ( C  =  C  /\  A. y  e.  C  ( (
f `  y ) `  x )  =  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `
 y ) `  x ) ) )
8685a1d 22 . . . . . . . 8  |-  ( f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  ->  ( x  e.  B  ->  ( C  =  C  /\  A. y  e.  C  ( (
f `  y ) `  x )  =  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `
 y ) `  x ) ) ) )
8777, 86ralrimi 2535 . . . . . . 7  |-  ( f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  ->  A. x  e.  B  ( C  =  C  /\  A. y  e.  C  ( ( f `  y ) `  x
)  =  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y ) `  x
) ) )
88 mpoeq123 5892 . . . . . . 7  |-  ( ( B  =  B  /\  A. x  e.  B  ( C  =  C  /\  A. y  e.  C  ( ( f `  y
) `  x )  =  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y
) `  x )
) )  ->  (
x  e.  B , 
y  e.  C  |->  ( ( f `  y
) `  x )
)  =  ( x  e.  B ,  y  e.  C  |->  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y ) `  x
) ) )
8973, 87, 88sylancr 411 . . . . . 6  |-  ( f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  ->  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  =  ( x  e.  B ,  y  e.  C  |->  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y ) `
 x ) ) )
9089eqeq2d 2176 . . . . 5  |-  ( f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  ->  ( g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `  x
) )  <->  g  =  ( x  e.  B ,  y  e.  C  |->  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y ) `
 x ) ) ) )
9172, 90syl5ibrcom 156 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  (
f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  ->  g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `  x
) ) ) )
9216ad2antrl 482 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  f : C --> ( A  ^m  B ) )
9392feqmptd 5533 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  f  =  ( y  e.  C  |->  ( f `  y ) ) )
94 simprl 521 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  f  e.  ( ( A  ^m  B )  ^m  C
) )
9594, 19sylan 281 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  y  e.  C
)  ->  ( f `  y ) : B --> A )
9695feqmptd 5533 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  y  e.  C
)  ->  ( f `  y )  =  ( x  e.  B  |->  ( ( f `  y
) `  x )
) )
9796mpteq2dva 4066 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  (
y  e.  C  |->  ( f `  y ) )  =  ( y  e.  C  |->  ( x  e.  B  |->  ( ( f `  y ) `
 x ) ) ) )
9893, 97eqtrd 2197 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( ( f `
 y ) `  x ) ) ) )
99 nfmpo2 5901 . . . . . . . . 9  |-  F/_ y
( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `  x
) )
10099nfeq2 2318 . . . . . . . 8  |-  F/ y  g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `
 x ) )
101 eqidd 2165 . . . . . . . . 9  |-  ( g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  ->  B  =  B )
102 nfmpo1 5900 . . . . . . . . . . 11  |-  F/_ x
( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `  x
) )
103102nfeq2 2318 . . . . . . . . . 10  |-  F/ x  g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )
104 nfv 1515 . . . . . . . . . 10  |-  F/ x  y  e.  C
105 vex 2724 . . . . . . . . . . . . . . 15  |-  f  e. 
_V
106105, 65fvex 5500 . . . . . . . . . . . . . 14  |-  ( f `
 y )  e. 
_V
107106, 63fvex 5500 . . . . . . . . . . . . 13  |-  ( ( f `  y ) `
 x )  e. 
_V
10824ovmpt4g 5955 . . . . . . . . . . . . 13  |-  ( ( x  e.  B  /\  y  e.  C  /\  ( ( f `  y ) `  x
)  e.  _V )  ->  ( x ( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `
 x ) ) y )  =  ( ( f `  y
) `  x )
)
109107, 108mp3an3 1315 . . . . . . . . . . . 12  |-  ( ( x  e.  B  /\  y  e.  C )  ->  ( x ( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `
 x ) ) y )  =  ( ( f `  y
) `  x )
)
110 oveq 5842 . . . . . . . . . . . . 13  |-  ( g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  -> 
( x g y )  =  ( x ( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `  x
) ) y ) )
111110eqeq1d 2173 . . . . . . . . . . . 12  |-  ( g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  -> 
( ( x g y )  =  ( ( f `  y
) `  x )  <->  ( x ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) ) y )  =  ( ( f `  y ) `
 x ) ) )
112109, 111syl5ibr 155 . . . . . . . . . . 11  |-  ( g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  -> 
( ( x  e.  B  /\  y  e.  C )  ->  (
x g y )  =  ( ( f `
 y ) `  x ) ) )
113112expcomd 1428 . . . . . . . . . 10  |-  ( g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  -> 
( y  e.  C  ->  ( x  e.  B  ->  ( x g y )  =  ( ( f `  y ) `
 x ) ) ) )
114103, 104, 113ralrimd 2542 . . . . . . . . 9  |-  ( g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  -> 
( y  e.  C  ->  A. x  e.  B  ( x g y )  =  ( ( f `  y ) `
 x ) ) )
115 mpteq12 4059 . . . . . . . . 9  |-  ( ( B  =  B  /\  A. x  e.  B  ( x g y )  =  ( ( f `
 y ) `  x ) )  -> 
( x  e.  B  |->  ( x g y ) )  =  ( x  e.  B  |->  ( ( f `  y
) `  x )
) )
116101, 114, 115syl6an 1421 . . . . . . . 8  |-  ( g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  -> 
( y  e.  C  ->  ( x  e.  B  |->  ( x g y ) )  =  ( x  e.  B  |->  ( ( f `  y
) `  x )
) ) )
117100, 116ralrimi 2535 . . . . . . 7  |-  ( g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  ->  A. y  e.  C  ( x  e.  B  |->  ( x g y ) )  =  ( x  e.  B  |->  ( ( f `  y
) `  x )
) )
118 mpteq12 4059 . . . . . . 7  |-  ( ( C  =  C  /\  A. y  e.  C  ( x  e.  B  |->  ( x g y ) )  =  ( x  e.  B  |->  ( ( f `  y ) `
 x ) ) )  ->  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  =  ( y  e.  C  |->  ( x  e.  B  |->  ( ( f `  y ) `
 x ) ) ) )
11984, 117, 118sylancr 411 . . . . . 6  |-  ( g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  -> 
( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  =  ( y  e.  C  |->  ( x  e.  B  |->  ( ( f `  y ) `  x
) ) ) )
120119eqeq2d 2176 . . . . 5  |-  ( g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  -> 
( f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  <->  f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( ( f `  y ) `  x
) ) ) ) )
12198, 120syl5ibrcom 156 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  (
g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `
 x ) )  ->  f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) ) )
12291, 121impbid 128 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  (
f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  <->  g  =  ( x  e.  B , 
y  e.  C  |->  ( ( f `  y
) `  x )
) ) )
123122ex 114 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) )  ->  ( f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  <-> 
g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `
 x ) ) ) ) )
12411, 15, 29, 47, 123en3d 6726 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  ^m  B )  ^m  C
)  ~~  ( A  ^m  ( B  X.  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 967    = wceq 1342    e. wcel 2135   A.wral 2442   _Vcvv 2721   class class class wbr 3976    |-> cmpt 4037    X. cxp 4596    Fn wfn 5177   -->wf 5178   ` cfv 5182  (class class class)co 5836    e. cmpo 5838    ^m cmap 6605    ~~ cen 6695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-map 6607  df-en 6698
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator