Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mapxpen | Unicode version |
Description: Equinumerosity law for double set exponentiation. Proposition 10.45 of [TakeutiZaring] p. 96. (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
mapxpen |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmap 6633 | . . 3 | |
2 | elex 2741 | . . . . 5 | |
3 | 2 | 3ad2ant1 1013 | . . . 4 |
4 | elex 2741 | . . . . 5 | |
5 | 4 | 3ad2ant2 1014 | . . . 4 |
6 | fnovex 5886 | . . . 4 | |
7 | 1, 3, 5, 6 | mp3an2i 1337 | . . 3 |
8 | elex 2741 | . . . 4 | |
9 | 8 | 3ad2ant3 1015 | . . 3 |
10 | fnovex 5886 | . . 3 | |
11 | 1, 7, 9, 10 | mp3an2i 1337 | . 2 |
12 | xpexg 4725 | . . . 4 | |
13 | 12 | 3adant1 1010 | . . 3 |
14 | fnovex 5886 | . . 3 | |
15 | 1, 3, 13, 14 | mp3an2i 1337 | . 2 |
16 | elmapi 6648 | . . . . . . . . . 10 | |
17 | 16 | ffvelrnda 5631 | . . . . . . . . 9 |
18 | elmapi 6648 | . . . . . . . . 9 | |
19 | 17, 18 | syl 14 | . . . . . . . 8 |
20 | 19 | ffvelrnda 5631 | . . . . . . 7 |
21 | 20 | an32s 563 | . . . . . 6 |
22 | 21 | ralrimiva 2543 | . . . . 5 |
23 | 22 | ralrimiva 2543 | . . . 4 |
24 | eqid 2170 | . . . . 5 | |
25 | 24 | fmpo 6180 | . . . 4 |
26 | 23, 25 | sylib 121 | . . 3 |
27 | simp1 992 | . . . 4 | |
28 | 27, 13 | elmapd 6640 | . . 3 |
29 | 26, 28 | syl5ibr 155 | . 2 |
30 | elmapi 6648 | . . . . . . . . 9 | |
31 | 30 | adantl 275 | . . . . . . . 8 |
32 | fovrn 5995 | . . . . . . . . . 10 | |
33 | 32 | 3expa 1198 | . . . . . . . . 9 |
34 | 33 | an32s 563 | . . . . . . . 8 |
35 | 31, 34 | sylanl1 400 | . . . . . . 7 |
36 | eqid 2170 | . . . . . . 7 | |
37 | 35, 36 | fmptd 5650 | . . . . . 6 |
38 | elmapg 6639 | . . . . . . . 8 | |
39 | 38 | 3adant3 1012 | . . . . . . 7 |
40 | 39 | ad2antrr 485 | . . . . . 6 |
41 | 37, 40 | mpbird 166 | . . . . 5 |
42 | eqid 2170 | . . . . 5 | |
43 | 41, 42 | fmptd 5650 | . . . 4 |
44 | 43 | ex 114 | . . 3 |
45 | simp3 994 | . . . 4 | |
46 | 7, 45 | elmapd 6640 | . . 3 |
47 | 44, 46 | sylibrd 168 | . 2 |
48 | elmapfn 6649 | . . . . . . . 8 | |
49 | 48 | ad2antll 488 | . . . . . . 7 |
50 | fnovim 5961 | . . . . . . 7 | |
51 | 49, 50 | syl 14 | . . . . . 6 |
52 | simp3 994 | . . . . . . . . . 10 | |
53 | 37 | adantlrl 479 | . . . . . . . . . . . 12 |
54 | 53 | 3adant2 1011 | . . . . . . . . . . 11 |
55 | simp1l2 1086 | . . . . . . . . . . 11 | |
56 | simp1l1 1085 | . . . . . . . . . . 11 | |
57 | fex2 5366 | . . . . . . . . . . 11 | |
58 | 54, 55, 56, 57 | syl3anc 1233 | . . . . . . . . . 10 |
59 | 42 | fvmpt2 5579 | . . . . . . . . . 10 |
60 | 52, 58, 59 | syl2anc 409 | . . . . . . . . 9 |
61 | 60 | fveq1d 5498 | . . . . . . . 8 |
62 | simp2 993 | . . . . . . . . 9 | |
63 | vex 2733 | . . . . . . . . . 10 | |
64 | vex 2733 | . . . . . . . . . 10 | |
65 | vex 2733 | . . . . . . . . . 10 | |
66 | ovexg 5887 | . . . . . . . . . 10 | |
67 | 63, 64, 65, 66 | mp3an 1332 | . . . . . . . . 9 |
68 | 36 | fvmpt2 5579 | . . . . . . . . 9 |
69 | 62, 67, 68 | sylancl 411 | . . . . . . . 8 |
70 | 61, 69 | eqtrd 2203 | . . . . . . 7 |
71 | 70 | mpoeq3dva 5917 | . . . . . 6 |
72 | 51, 71 | eqtr4d 2206 | . . . . 5 |
73 | eqid 2170 | . . . . . . 7 | |
74 | nfcv 2312 | . . . . . . . . . 10 | |
75 | nfmpt1 4082 | . . . . . . . . . 10 | |
76 | 74, 75 | nfmpt 4081 | . . . . . . . . 9 |
77 | 76 | nfeq2 2324 | . . . . . . . 8 |
78 | nfmpt1 4082 | . . . . . . . . . . . 12 | |
79 | 78 | nfeq2 2324 | . . . . . . . . . . 11 |
80 | fveq1 5495 | . . . . . . . . . . . . 13 | |
81 | 80 | fveq1d 5498 | . . . . . . . . . . . 12 |
82 | 81 | a1d 22 | . . . . . . . . . . 11 |
83 | 79, 82 | ralrimi 2541 | . . . . . . . . . 10 |
84 | eqid 2170 | . . . . . . . . . 10 | |
85 | 83, 84 | jctil 310 | . . . . . . . . 9 |
86 | 85 | a1d 22 | . . . . . . . 8 |
87 | 77, 86 | ralrimi 2541 | . . . . . . 7 |
88 | mpoeq123 5912 | . . . . . . 7 | |
89 | 73, 87, 88 | sylancr 412 | . . . . . 6 |
90 | 89 | eqeq2d 2182 | . . . . 5 |
91 | 72, 90 | syl5ibrcom 156 | . . . 4 |
92 | 16 | ad2antrl 487 | . . . . . . 7 |
93 | 92 | feqmptd 5549 | . . . . . 6 |
94 | simprl 526 | . . . . . . . . 9 | |
95 | 94, 19 | sylan 281 | . . . . . . . 8 |
96 | 95 | feqmptd 5549 | . . . . . . 7 |
97 | 96 | mpteq2dva 4079 | . . . . . 6 |
98 | 93, 97 | eqtrd 2203 | . . . . 5 |
99 | nfmpo2 5921 | . . . . . . . . 9 | |
100 | 99 | nfeq2 2324 | . . . . . . . 8 |
101 | eqidd 2171 | . . . . . . . . 9 | |
102 | nfmpo1 5920 | . . . . . . . . . . 11 | |
103 | 102 | nfeq2 2324 | . . . . . . . . . 10 |
104 | nfv 1521 | . . . . . . . . . 10 | |
105 | vex 2733 | . . . . . . . . . . . . . . 15 | |
106 | 105, 65 | fvex 5516 | . . . . . . . . . . . . . 14 |
107 | 106, 63 | fvex 5516 | . . . . . . . . . . . . 13 |
108 | 24 | ovmpt4g 5975 | . . . . . . . . . . . . 13 |
109 | 107, 108 | mp3an3 1321 | . . . . . . . . . . . 12 |
110 | oveq 5859 | . . . . . . . . . . . . 13 | |
111 | 110 | eqeq1d 2179 | . . . . . . . . . . . 12 |
112 | 109, 111 | syl5ibr 155 | . . . . . . . . . . 11 |
113 | 112 | expcomd 1434 | . . . . . . . . . 10 |
114 | 103, 104, 113 | ralrimd 2548 | . . . . . . . . 9 |
115 | mpteq12 4072 | . . . . . . . . 9 | |
116 | 101, 114, 115 | syl6an 1427 | . . . . . . . 8 |
117 | 100, 116 | ralrimi 2541 | . . . . . . 7 |
118 | mpteq12 4072 | . . . . . . 7 | |
119 | 84, 117, 118 | sylancr 412 | . . . . . 6 |
120 | 119 | eqeq2d 2182 | . . . . 5 |
121 | 98, 120 | syl5ibrcom 156 | . . . 4 |
122 | 91, 121 | impbid 128 | . . 3 |
123 | 122 | ex 114 | . 2 |
124 | 11, 15, 29, 47, 123 | en3d 6747 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 cvv 2730 class class class wbr 3989 cmpt 4050 cxp 4609 wfn 5193 wf 5194 cfv 5198 (class class class)co 5853 cmpo 5855 cmap 6626 cen 6716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-map 6628 df-en 6719 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |