ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimdv Unicode version

Theorem ralrimdv 2609
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.)
Hypothesis
Ref Expression
ralrimdv.1  |-  ( ph  ->  ( ps  ->  (
x  e.  A  ->  ch ) ) )
Assertion
Ref Expression
ralrimdv  |-  ( ph  ->  ( ps  ->  A. x  e.  A  ch )
)
Distinct variable groups:    ph, x    ps, x
Allowed substitution hints:    ch( x)    A( x)

Proof of Theorem ralrimdv
StepHypRef Expression
1 nfv 1574 . 2  |-  F/ x ph
2 nfv 1574 . 2  |-  F/ x ps
3 ralrimdv.1 . 2  |-  ( ph  ->  ( ps  ->  (
x  e.  A  ->  ch ) ) )
41, 2, 3ralrimd 2608 1  |-  ( ph  ->  ( ps  ->  A. x  e.  A  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   A.wral 2508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-4 1556  ax-17 1572
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-ral 2513
This theorem is referenced by:  ralrimdva  2610  ralrimivv  2611  nneneq  7018  fzrevral  10301  islss4  14346  topbas  14741  neipsm  14828  cnpnei  14893  metcnp3  15185  mpomulcn  15240
  Copyright terms: Public domain W3C validator