Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzrevral | Unicode version |
Description: Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
Ref | Expression |
---|---|
fzrevral |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . . . . 8 | |
2 | elfzelz 9981 | . . . . . . . . 9 | |
3 | fzrev 10040 | . . . . . . . . . 10 | |
4 | 3 | anassrs 398 | . . . . . . . . 9 |
5 | 2, 4 | sylan2 284 | . . . . . . . 8 |
6 | 1, 5 | mpbid 146 | . . . . . . 7 |
7 | rspsbc 3037 | . . . . . . 7 | |
8 | 6, 7 | syl 14 | . . . . . 6 |
9 | 8 | ex 114 | . . . . 5 |
10 | 9 | 3impa 1189 | . . . 4 |
11 | 10 | com23 78 | . . 3 |
12 | 11 | ralrimdv 2549 | . 2 |
13 | nfv 1521 | . . . 4 | |
14 | nfcv 2312 | . . . . 5 | |
15 | nfsbc1v 2973 | . . . . 5 | |
16 | 14, 15 | nfralxy 2508 | . . . 4 |
17 | fzrev2i 10042 | . . . . . . . 8 | |
18 | oveq2 5861 | . . . . . . . . . 10 | |
19 | 18 | sbceq1d 2960 | . . . . . . . . 9 |
20 | 19 | rspcv 2830 | . . . . . . . 8 |
21 | 17, 20 | syl 14 | . . . . . . 7 |
22 | zcn 9217 | . . . . . . . . . 10 | |
23 | elfzelz 9981 | . . . . . . . . . . 11 | |
24 | 23 | zcnd 9335 | . . . . . . . . . 10 |
25 | nncan 8148 | . . . . . . . . . 10 | |
26 | 22, 24, 25 | syl2an 287 | . . . . . . . . 9 |
27 | 26 | eqcomd 2176 | . . . . . . . 8 |
28 | sbceq1a 2964 | . . . . . . . 8 | |
29 | 27, 28 | syl 14 | . . . . . . 7 |
30 | 21, 29 | sylibrd 168 | . . . . . 6 |
31 | 30 | ex 114 | . . . . 5 |
32 | 31 | com23 78 | . . . 4 |
33 | 13, 16, 32 | ralrimd 2548 | . . 3 |
34 | 33 | 3ad2ant3 1015 | . 2 |
35 | 12, 34 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 wsbc 2955 (class class class)co 5853 cc 7772 cmin 8090 cz 9212 cfz 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 |
This theorem is referenced by: fzrevral2 10062 fzrevral3 10063 fzshftral 10064 |
Copyright terms: Public domain | W3C validator |