ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzrevral Unicode version

Theorem fzrevral 10227
Description: Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
Assertion
Ref Expression
fzrevral  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  <->  A. k  e.  ( ( K  -  N ) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph ) )
Distinct variable groups:    j, k, K   
j, M, k    j, N, k    ph, k
Allowed substitution hint:    ph( j)

Proof of Theorem fzrevral
StepHypRef Expression
1 simpr 110 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )
2 elfzelz 10147 . . . . . . . . 9  |-  ( k  e.  ( ( K  -  N ) ... ( K  -  M
) )  ->  k  e.  ZZ )
3 fzrev 10206 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  k  e.  ZZ ) )  -> 
( k  e.  ( ( K  -  N
) ... ( K  -  M ) )  <->  ( K  -  k )  e.  ( M ... N
) ) )
43anassrs 400 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( K  -  N ) ... ( K  -  M ) )  <->  ( K  -  k )  e.  ( M ... N
) ) )
52, 4sylan2 286 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  (
k  e.  ( ( K  -  N ) ... ( K  -  M ) )  <->  ( K  -  k )  e.  ( M ... N
) ) )
61, 5mpbid 147 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  ( K  -  k )  e.  ( M ... N
) )
7 rspsbc 3081 . . . . . . 7  |-  ( ( K  -  k )  e.  ( M ... N )  ->  ( A. j  e.  ( M ... N ) ph  ->  [. ( K  -  k )  /  j ]. ph ) )
86, 7syl 14 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  ( A. j  e.  ( M ... N ) ph  ->  [. ( K  -  k )  /  j ]. ph ) )
98ex 115 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( k  e.  ( ( K  -  N ) ... ( K  -  M )
)  ->  ( A. j  e.  ( M ... N ) ph  ->  [. ( K  -  k
)  /  j ]. ph ) ) )
1093impa 1197 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  e.  ( ( K  -  N ) ... ( K  -  M ) )  -> 
( A. j  e.  ( M ... N
) ph  ->  [. ( K  -  k )  /  j ]. ph )
) )
1110com23 78 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  ->  ( k  e.  ( ( K  -  N
) ... ( K  -  M ) )  ->  [. ( K  -  k
)  /  j ]. ph ) ) )
1211ralrimdv 2585 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  ->  A. k  e.  ( ( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph ) )
13 nfv 1551 . . . 4  |-  F/ j  K  e.  ZZ
14 nfcv 2348 . . . . 5  |-  F/_ j
( ( K  -  N ) ... ( K  -  M )
)
15 nfsbc1v 3017 . . . . 5  |-  F/ j
[. ( K  -  k )  /  j ]. ph
1614, 15nfralxy 2544 . . . 4  |-  F/ j A. k  e.  ( ( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph
17 fzrev2i 10208 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
( K  -  j
)  e.  ( ( K  -  N ) ... ( K  -  M ) ) )
18 oveq2 5952 . . . . . . . . . 10  |-  ( k  =  ( K  -  j )  ->  ( K  -  k )  =  ( K  -  ( K  -  j
) ) )
1918sbceq1d 3003 . . . . . . . . 9  |-  ( k  =  ( K  -  j )  ->  ( [. ( K  -  k
)  /  j ]. ph  <->  [. ( K  -  ( K  -  j )
)  /  j ]. ph ) )
2019rspcv 2873 . . . . . . . 8  |-  ( ( K  -  j )  e.  ( ( K  -  N ) ... ( K  -  M
) )  ->  ( A. k  e.  (
( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph 
->  [. ( K  -  ( K  -  j
) )  /  j ]. ph ) )
2117, 20syl 14 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
( A. k  e.  ( ( K  -  N ) ... ( K  -  M )
) [. ( K  -  k )  /  j ]. ph  ->  [. ( K  -  ( K  -  j ) )  / 
j ]. ph ) )
22 zcn 9377 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  K  e.  CC )
23 elfzelz 10147 . . . . . . . . . . 11  |-  ( j  e.  ( M ... N )  ->  j  e.  ZZ )
2423zcnd 9496 . . . . . . . . . 10  |-  ( j  e.  ( M ... N )  ->  j  e.  CC )
25 nncan 8301 . . . . . . . . . 10  |-  ( ( K  e.  CC  /\  j  e.  CC )  ->  ( K  -  ( K  -  j )
)  =  j )
2622, 24, 25syl2an 289 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
( K  -  ( K  -  j )
)  =  j )
2726eqcomd 2211 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
j  =  ( K  -  ( K  -  j ) ) )
28 sbceq1a 3008 . . . . . . . 8  |-  ( j  =  ( K  -  ( K  -  j
) )  ->  ( ph 
<-> 
[. ( K  -  ( K  -  j
) )  /  j ]. ph ) )
2927, 28syl 14 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
( ph  <->  [. ( K  -  ( K  -  j
) )  /  j ]. ph ) )
3021, 29sylibrd 169 . . . . . 6  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
( A. k  e.  ( ( K  -  N ) ... ( K  -  M )
) [. ( K  -  k )  /  j ]. ph  ->  ph ) )
3130ex 115 . . . . 5  |-  ( K  e.  ZZ  ->  (
j  e.  ( M ... N )  -> 
( A. k  e.  ( ( K  -  N ) ... ( K  -  M )
) [. ( K  -  k )  /  j ]. ph  ->  ph ) ) )
3231com23 78 . . . 4  |-  ( K  e.  ZZ  ->  ( A. k  e.  (
( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph 
->  ( j  e.  ( M ... N )  ->  ph ) ) )
3313, 16, 32ralrimd 2584 . . 3  |-  ( K  e.  ZZ  ->  ( A. k  e.  (
( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph 
->  A. j  e.  ( M ... N )
ph ) )
34333ad2ant3 1023 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. k  e.  (
( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph 
->  A. j  e.  ( M ... N )
ph ) )
3512, 34impbid 129 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  <->  A. k  e.  ( ( K  -  N ) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   [.wsbc 2998  (class class class)co 5944   CCcc 7923    - cmin 8243   ZZcz 9372   ...cfz 10130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131
This theorem is referenced by:  fzrevral2  10228  fzrevral3  10229  fzshftral  10230
  Copyright terms: Public domain W3C validator