ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzrevral Unicode version

Theorem fzrevral 10040
Description: Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
Assertion
Ref Expression
fzrevral  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  <->  A. k  e.  ( ( K  -  N ) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph ) )
Distinct variable groups:    j, k, K   
j, M, k    j, N, k    ph, k
Allowed substitution hint:    ph( j)

Proof of Theorem fzrevral
StepHypRef Expression
1 simpr 109 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )
2 elfzelz 9960 . . . . . . . . 9  |-  ( k  e.  ( ( K  -  N ) ... ( K  -  M
) )  ->  k  e.  ZZ )
3 fzrev 10019 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  k  e.  ZZ ) )  -> 
( k  e.  ( ( K  -  N
) ... ( K  -  M ) )  <->  ( K  -  k )  e.  ( M ... N
) ) )
43anassrs 398 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( K  -  N ) ... ( K  -  M ) )  <->  ( K  -  k )  e.  ( M ... N
) ) )
52, 4sylan2 284 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  (
k  e.  ( ( K  -  N ) ... ( K  -  M ) )  <->  ( K  -  k )  e.  ( M ... N
) ) )
61, 5mpbid 146 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  ( K  -  k )  e.  ( M ... N
) )
7 rspsbc 3033 . . . . . . 7  |-  ( ( K  -  k )  e.  ( M ... N )  ->  ( A. j  e.  ( M ... N ) ph  ->  [. ( K  -  k )  /  j ]. ph ) )
86, 7syl 14 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  ( A. j  e.  ( M ... N ) ph  ->  [. ( K  -  k )  /  j ]. ph ) )
98ex 114 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( k  e.  ( ( K  -  N ) ... ( K  -  M )
)  ->  ( A. j  e.  ( M ... N ) ph  ->  [. ( K  -  k
)  /  j ]. ph ) ) )
1093impa 1184 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  e.  ( ( K  -  N ) ... ( K  -  M ) )  -> 
( A. j  e.  ( M ... N
) ph  ->  [. ( K  -  k )  /  j ]. ph )
) )
1110com23 78 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  ->  ( k  e.  ( ( K  -  N
) ... ( K  -  M ) )  ->  [. ( K  -  k
)  /  j ]. ph ) ) )
1211ralrimdv 2545 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  ->  A. k  e.  ( ( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph ) )
13 nfv 1516 . . . 4  |-  F/ j  K  e.  ZZ
14 nfcv 2308 . . . . 5  |-  F/_ j
( ( K  -  N ) ... ( K  -  M )
)
15 nfsbc1v 2969 . . . . 5  |-  F/ j
[. ( K  -  k )  /  j ]. ph
1614, 15nfralxy 2504 . . . 4  |-  F/ j A. k  e.  ( ( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph
17 fzrev2i 10021 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
( K  -  j
)  e.  ( ( K  -  N ) ... ( K  -  M ) ) )
18 oveq2 5850 . . . . . . . . . 10  |-  ( k  =  ( K  -  j )  ->  ( K  -  k )  =  ( K  -  ( K  -  j
) ) )
1918sbceq1d 2956 . . . . . . . . 9  |-  ( k  =  ( K  -  j )  ->  ( [. ( K  -  k
)  /  j ]. ph  <->  [. ( K  -  ( K  -  j )
)  /  j ]. ph ) )
2019rspcv 2826 . . . . . . . 8  |-  ( ( K  -  j )  e.  ( ( K  -  N ) ... ( K  -  M
) )  ->  ( A. k  e.  (
( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph 
->  [. ( K  -  ( K  -  j
) )  /  j ]. ph ) )
2117, 20syl 14 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
( A. k  e.  ( ( K  -  N ) ... ( K  -  M )
) [. ( K  -  k )  /  j ]. ph  ->  [. ( K  -  ( K  -  j ) )  / 
j ]. ph ) )
22 zcn 9196 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  K  e.  CC )
23 elfzelz 9960 . . . . . . . . . . 11  |-  ( j  e.  ( M ... N )  ->  j  e.  ZZ )
2423zcnd 9314 . . . . . . . . . 10  |-  ( j  e.  ( M ... N )  ->  j  e.  CC )
25 nncan 8127 . . . . . . . . . 10  |-  ( ( K  e.  CC  /\  j  e.  CC )  ->  ( K  -  ( K  -  j )
)  =  j )
2622, 24, 25syl2an 287 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
( K  -  ( K  -  j )
)  =  j )
2726eqcomd 2171 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
j  =  ( K  -  ( K  -  j ) ) )
28 sbceq1a 2960 . . . . . . . 8  |-  ( j  =  ( K  -  ( K  -  j
) )  ->  ( ph 
<-> 
[. ( K  -  ( K  -  j
) )  /  j ]. ph ) )
2927, 28syl 14 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
( ph  <->  [. ( K  -  ( K  -  j
) )  /  j ]. ph ) )
3021, 29sylibrd 168 . . . . . 6  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
( A. k  e.  ( ( K  -  N ) ... ( K  -  M )
) [. ( K  -  k )  /  j ]. ph  ->  ph ) )
3130ex 114 . . . . 5  |-  ( K  e.  ZZ  ->  (
j  e.  ( M ... N )  -> 
( A. k  e.  ( ( K  -  N ) ... ( K  -  M )
) [. ( K  -  k )  /  j ]. ph  ->  ph ) ) )
3231com23 78 . . . 4  |-  ( K  e.  ZZ  ->  ( A. k  e.  (
( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph 
->  ( j  e.  ( M ... N )  ->  ph ) ) )
3313, 16, 32ralrimd 2544 . . 3  |-  ( K  e.  ZZ  ->  ( A. k  e.  (
( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph 
->  A. j  e.  ( M ... N )
ph ) )
34333ad2ant3 1010 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. k  e.  (
( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph 
->  A. j  e.  ( M ... N )
ph ) )
3512, 34impbid 128 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  <->  A. k  e.  ( ( K  -  N ) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2444   [.wsbc 2951  (class class class)co 5842   CCcc 7751    - cmin 8069   ZZcz 9191   ...cfz 9944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945
This theorem is referenced by:  fzrevral2  10041  fzrevral3  10042  fzshftral  10043
  Copyright terms: Public domain W3C validator