ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralbida Unicode version

Theorem ralbida 2464
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Oct-2003.)
Hypotheses
Ref Expression
ralbida.1  |-  F/ x ph
ralbida.2  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
ralbida  |-  ( ph  ->  ( A. x  e.  A  ps  <->  A. x  e.  A  ch )
)

Proof of Theorem ralbida
StepHypRef Expression
1 ralbida.1 . . 3  |-  F/ x ph
2 ralbida.2 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
32pm5.74da 441 . . 3  |-  ( ph  ->  ( ( x  e.  A  ->  ps )  <->  ( x  e.  A  ->  ch ) ) )
41, 3albid 1608 . 2  |-  ( ph  ->  ( A. x ( x  e.  A  ->  ps )  <->  A. x ( x  e.  A  ->  ch ) ) )
5 df-ral 2453 . 2  |-  ( A. x  e.  A  ps  <->  A. x ( x  e.  A  ->  ps )
)
6 df-ral 2453 . 2  |-  ( A. x  e.  A  ch  <->  A. x ( x  e.  A  ->  ch )
)
74, 5, 63bitr4g 222 1  |-  ( ph  ->  ( A. x  e.  A  ps  <->  A. x  e.  A  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346   F/wnf 1453    e. wcel 2141   A.wral 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-4 1503
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-ral 2453
This theorem is referenced by:  ralbidva  2466  ralbid  2468  2ralbida  2491  ralbi  2602  ismkvnex  7131  caucvgsrlemgt1  7757  iswomninnlem  14081
  Copyright terms: Public domain W3C validator