| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexbid | Unicode version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| ralbid.1 |
|
| ralbid.2 |
|
| Ref | Expression |
|---|---|
| rexbid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbid.1 |
. 2
| |
| 2 | ralbid.2 |
. . 3
| |
| 3 | 2 | adantr 276 |
. 2
|
| 4 | 1, 3 | rexbida 2525 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-rex 2514 |
| This theorem is referenced by: rexbidv 2531 sbcrext 3106 mkvprop 7325 caucvgsrlemgt1 7982 bezout 12532 |
| Copyright terms: Public domain | W3C validator |