Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexbid | Unicode version |
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
ralbid.1 | |
ralbid.2 |
Ref | Expression |
---|---|
rexbid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbid.1 | . 2 | |
2 | ralbid.2 | . . 3 | |
3 | 2 | adantr 274 | . 2 |
4 | 1, 3 | rexbida 2461 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wnf 1448 wcel 2136 wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-rex 2450 |
This theorem is referenced by: rexbidv 2467 sbcrext 3028 mkvprop 7122 caucvgsrlemgt1 7736 bezout 11944 |
Copyright terms: Public domain | W3C validator |