ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexbid Unicode version

Theorem rexbid 2469
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 27-Jun-1998.)
Hypotheses
Ref Expression
ralbid.1  |-  F/ x ph
ralbid.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
rexbid  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. x  e.  A  ch )
)

Proof of Theorem rexbid
StepHypRef Expression
1 ralbid.1 . 2  |-  F/ x ph
2 ralbid.2 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
32adantr 274 . 2  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
41, 3rexbida 2465 1  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. x  e.  A  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   F/wnf 1453    e. wcel 2141   E.wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-rex 2454
This theorem is referenced by:  rexbidv  2471  sbcrext  3032  mkvprop  7134  caucvgsrlemgt1  7757  bezout  11966
  Copyright terms: Public domain W3C validator