ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexbid Unicode version

Theorem rexbid 2505
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 27-Jun-1998.)
Hypotheses
Ref Expression
ralbid.1  |-  F/ x ph
ralbid.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
rexbid  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. x  e.  A  ch )
)

Proof of Theorem rexbid
StepHypRef Expression
1 ralbid.1 . 2  |-  F/ x ph
2 ralbid.2 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
32adantr 276 . 2  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
41, 3rexbida 2501 1  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. x  e.  A  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   F/wnf 1483    e. wcel 2176   E.wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-rex 2490
This theorem is referenced by:  rexbidv  2507  sbcrext  3076  mkvprop  7262  caucvgsrlemgt1  7910  bezout  12365
  Copyright terms: Public domain W3C validator