ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemgt1 Unicode version

Theorem caucvgsrlemgt1 7879
Description: Lemma for caucvgsr 7886. A Cauchy sequence whose terms are greater than one converges. (Contributed by Jim Kingdon, 22-Jun-2021.)
Hypotheses
Ref Expression
caucvgsr.f  |-  ( ph  ->  F : N. --> R. )
caucvgsr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
caucvgsrlemgt1.gt1  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
Assertion
Ref Expression
caucvgsrlemgt1  |-  ( ph  ->  E. y  e.  R.  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e. 
N.  ( j  <N 
i  ->  ( ( F `  i )  <R  ( y  +R  x
)  /\  y  <R  ( ( F `  i
)  +R  x ) ) ) ) )
Distinct variable groups:    j, F, k, l, u    i, F, x, j, k    m, F, n, k    n, l, u    y, F, i, j, x    ph, j,
k, x    ph, n    k, m, n
Allowed substitution hints:    ph( y, u, i, m, l)

Proof of Theorem caucvgsrlemgt1
Dummy variables  a  b  w  z  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgsr.f . . . 4  |-  ( ph  ->  F : N. --> R. )
2 caucvgsr.cau . . . 4  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
3 caucvgsrlemgt1.gt1 . . . 4  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
4 eqid 2196 . . . 4  |-  ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) )  =  ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
)
51, 2, 3, 4caucvgsrlemf 7876 . . 3  |-  ( ph  ->  ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) : N. --> P. )
61, 2, 3, 4caucvgsrlemcau 7877 . . 3  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  n
)  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  n )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
71, 2, 3, 4caucvgsrlembound 7878 . . 3  |-  ( ph  ->  A. m  e.  N.  1P  <P  ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  m ) )
85, 6, 7caucvgprpr 7796 . 2  |-  ( ph  ->  E. a  e.  P.  A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  ( j  <N 
k  ->  ( (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( a  +P.  b
)  /\  a  <P  ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  b )
) ) )
9 prsrcl 7868 . . . 4  |-  ( a  e.  P.  ->  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
109ad2antrl 490 . . 3  |-  ( (
ph  /\  ( a  e.  P.  /\  A. b  e.  P.  E. j  e. 
N.  A. k  e.  N.  ( j  <N  k  ->  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  <P  (
a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  b ) ) ) ) )  ->  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
11 oveq2 5933 . . . . . . . . . . . 12  |-  ( b  =  ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  ->  (
a  +P.  b )  =  ( a  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) )
1211breq2d 4046 . . . . . . . . . . 11  |-  ( b  =  ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  <->  ( (
z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) ) )
13 oveq2 5933 . . . . . . . . . . . 12  |-  ( b  =  ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  b )  =  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) )
1413breq2d 4046 . . . . . . . . . . 11  |-  ( b  =  ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  ->  (
a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  b )  <->  a  <P  ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) ) )
1512, 14anbi12d 473 . . . . . . . . . 10  |-  ( b  =  ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  ->  (
( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  <P  (
a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  b ) )  <->  ( (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  /\  a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) ) ) )
1615imbi2d 230 . . . . . . . . 9  |-  ( b  =  ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  ->  (
( j  <N  k  ->  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  <P  (
a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  b ) ) )  <-> 
( j  <N  k  ->  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  <P  (
a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  /\  a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) ) ) ) )
1716rexralbidv 2523 . . . . . . . 8  |-  ( b  =  ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  ->  ( E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) )  <->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  /\  a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) ) ) ) )
18 simplrr 536 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  P.  /\  A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  ( j  <N 
k  ->  ( (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( a  +P.  b
)  /\  a  <P  ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  b )
) ) ) )  /\  x  e.  R. )  ->  A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) )
1918adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  A. b  e.  P.  E. j  e. 
N.  A. k  e.  N.  ( j  <N  k  ->  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  <P  (
a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  b ) ) ) )
20 srpospr 7867 . . . . . . . . . 10  |-  ( ( x  e.  R.  /\  0R  <R  x )  ->  E! c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )
21 riotacl 5895 . . . . . . . . . 10  |-  ( E! c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x  ->  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  e.  P. )
2220, 21syl 14 . . . . . . . . 9  |-  ( ( x  e.  R.  /\  0R  <R  x )  -> 
( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  e.  P. )
2322adantll 476 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  e.  P. )
2417, 19, 23rspcdva 2873 . . . . . . 7  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  /\  a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) ) ) )
25 nfv 1542 . . . . . . . . . . 11  |-  F/ j
ph
26 nfv 1542 . . . . . . . . . . . 12  |-  F/ j  a  e.  P.
27 nfcv 2339 . . . . . . . . . . . . 13  |-  F/_ j P.
28 nfre1 2540 . . . . . . . . . . . . 13  |-  F/ j E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) )
2927, 28nfralya 2537 . . . . . . . . . . . 12  |-  F/ j A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) )
3026, 29nfan 1579 . . . . . . . . . . 11  |-  F/ j ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) )
3125, 30nfan 1579 . . . . . . . . . 10  |-  F/ j ( ph  /\  (
a  e.  P.  /\  A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  ( j  <N 
k  ->  ( (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( a  +P.  b
)  /\  a  <P  ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  b )
) ) ) )
32 nfv 1542 . . . . . . . . . 10  |-  F/ j  x  e.  R.
3331, 32nfan 1579 . . . . . . . . 9  |-  F/ j ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )
34 nfv 1542 . . . . . . . . 9  |-  F/ j 0R  <R  x
3533, 34nfan 1579 . . . . . . . 8  |-  F/ j ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )
36 nfv 1542 . . . . . . . . . . . 12  |-  F/ k
ph
37 nfv 1542 . . . . . . . . . . . . 13  |-  F/ k  a  e.  P.
38 nfcv 2339 . . . . . . . . . . . . . 14  |-  F/_ k P.
39 nfcv 2339 . . . . . . . . . . . . . . 15  |-  F/_ k N.
40 nfra1 2528 . . . . . . . . . . . . . . 15  |-  F/ k A. k  e.  N.  ( j  <N  k  ->  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  <P  (
a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  b ) ) )
4139, 40nfrexya 2538 . . . . . . . . . . . . . 14  |-  F/ k E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) )
4238, 41nfralya 2537 . . . . . . . . . . . . 13  |-  F/ k A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) )
4337, 42nfan 1579 . . . . . . . . . . . 12  |-  F/ k ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) )
4436, 43nfan 1579 . . . . . . . . . . 11  |-  F/ k ( ph  /\  (
a  e.  P.  /\  A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  ( j  <N 
k  ->  ( (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( a  +P.  b
)  /\  a  <P  ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  b )
) ) ) )
45 nfv 1542 . . . . . . . . . . 11  |-  F/ k  x  e.  R.
4644, 45nfan 1579 . . . . . . . . . 10  |-  F/ k ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )
47 nfv 1542 . . . . . . . . . 10  |-  F/ k 0R  <R  x
4846, 47nfan 1579 . . . . . . . . 9  |-  F/ k ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )
495ad4antr 494 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  (
z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) : N. --> P. )
50 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  k  e.  N. )
5149, 50ffvelcdmd 5701 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  e.  P. )
52 simplrl 535 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
a  e.  P.  /\  A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  ( j  <N 
k  ->  ( (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( a  +P.  b
)  /\  a  <P  ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  b )
) ) ) )  /\  x  e.  R. )  ->  a  e.  P. )
5352adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  a  e.  P. )
54 addclpr 7621 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  P.  /\  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  e.  P. )  ->  ( a  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  e. 
P. )
5553, 23, 54syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  (
a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  e. 
P. )
5655adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  (
a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  e. 
P. )
57 prsrlt 7871 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  e.  P.  /\  ( a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  e. 
P. )  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  <->  [ <. (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( ( a  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  ) )
5851, 56, 57syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  <->  [ <. (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( ( a  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  ) )
591, 2, 3, 4caucvgsrlemfv 7875 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  N. )  ->  [ <. ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  k ) )
6059adantlr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
a  e.  P.  /\  A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  ( j  <N 
k  ->  ( (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( a  +P.  b
)  /\  a  <P  ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  b )
) ) ) )  /\  k  e.  N. )  ->  [ <. (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  k ) )
6160adantlr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  k  e.  N. )  ->  [ <. ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  k ) )
6261adantlr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  [ <. ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  k ) )
63 prsradd 7870 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  P.  /\  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  e.  P. )  ->  [ <. (
( a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  =  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  [ <. ( ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  ) )
6453, 23, 63syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  [ <. ( ( a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  =  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  [ <. ( ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  ) )
65 prsrriota 7872 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  R.  /\  0R  <R  x )  ->  [ <. ( ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  =  x )
6665oveq2d 5941 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  R.  /\  0R  <R  x )  -> 
( [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  )  =  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x ) )
6766adantll 476 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  [ <. ( ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  )  =  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x ) )
6864, 67eqtrd 2229 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  [ <. ( ( a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  =  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  x
) )
6968adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  [ <. ( ( a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  =  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  x
) )
7062, 69breq12d 4047 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  ( [ <. ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  1P ) ,  1P >. ]  ~R  <R  [ <. ( ( a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  <->  ( F `  k )  <R  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  x
) ) )
7158, 70bitrd 188 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  <->  ( F `  k )  <R  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  x
) ) )
7253adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  a  e.  P. )
7323adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  e.  P. )
74 addclpr 7621 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  e.  P.  /\  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  e.  P. )  ->  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  e. 
P. )
7551, 73, 74syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  e. 
P. )
76 prsrlt 7871 . . . . . . . . . . . . 13  |-  ( ( a  e.  P.  /\  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  e. 
P. )  ->  (
a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  <->  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  ) )
7772, 75, 76syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  (
a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  <->  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  ) )
78 prsradd 7870 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  e.  P.  /\  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  e.  P. )  ->  [ <. (
( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  =  ( [ <. ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  ) )
7951, 73, 78syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  [ <. ( ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  =  ( [ <. ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  ) )
8079breq2d 4046 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  <R  [ <. ( ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  <->  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  <R  ( [ <. ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  ) ) )
8165adantll 476 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  [ <. ( ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  =  x )
8281adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  [ <. ( ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  =  x )
8362, 82oveq12d 5943 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  ( [ <. ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  )  =  ( ( F `  k )  +R  x ) )
8483breq2d 4046 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  <R  ( [ <. ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  ) 
<->  [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  <R  (
( F `  k
)  +R  x ) ) )
8577, 80, 843bitrd 214 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  (
a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  <->  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  k
)  +R  x ) ) )
8671, 85anbi12d 473 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  (
( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  <P  (
a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  /\  a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) )  <-> 
( ( F `  k )  <R  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  x
)  /\  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  k
)  +R  x ) ) ) )
8786imbi2d 230 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  (
( j  <N  k  ->  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  <P  (
a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  /\  a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) ) )  <->  ( j  <N 
k  ->  ( ( F `  k )  <R  ( [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  k )  +R  x
) ) ) ) )
8848, 87ralbida 2491 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  ( A. k  e.  N.  ( j  <N  k  ->  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  <P  (
a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  /\  a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) ) )  <->  A. k  e.  N.  ( j  <N  k  ->  ( ( F `  k )  <R  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  x
)  /\  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  k
)  +R  x ) ) ) ) )
8935, 88rexbid 2496 . . . . . . 7  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  ( E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  /\  a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) ) )  <->  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <R  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  k )  +R  x
) ) ) ) )
9024, 89mpbid 147 . . . . . 6  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( ( F `  k )  <R  ( [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  k )  +R  x
) ) ) )
91 breq2 4038 . . . . . . . . 9  |-  ( k  =  i  ->  (
j  <N  k  <->  j  <N  i ) )
92 fveq2 5561 . . . . . . . . . . 11  |-  ( k  =  i  ->  ( F `  k )  =  ( F `  i ) )
9392breq1d 4044 . . . . . . . . . 10  |-  ( k  =  i  ->  (
( F `  k
)  <R  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  <->  ( F `  i )  <R  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  x
) ) )
9492oveq1d 5940 . . . . . . . . . . 11  |-  ( k  =  i  ->  (
( F `  k
)  +R  x )  =  ( ( F `
 i )  +R  x ) )
9594breq2d 4046 . . . . . . . . . 10  |-  ( k  =  i  ->  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  <R  (
( F `  k
)  +R  x )  <->  [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  <R  (
( F `  i
)  +R  x ) ) )
9693, 95anbi12d 473 . . . . . . . . 9  |-  ( k  =  i  ->  (
( ( F `  k )  <R  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  x
)  /\  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  k
)  +R  x ) )  <->  ( ( F `
 i )  <R 
( [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) )
9791, 96imbi12d 234 . . . . . . . 8  |-  ( k  =  i  ->  (
( j  <N  k  ->  ( ( F `  k )  <R  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  x
)  /\  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  k
)  +R  x ) ) )  <->  ( j  <N  i  ->  ( ( F `  i )  <R  ( [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) ) )
9897cbvralv 2729 . . . . . . 7  |-  ( A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <R  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  k )  +R  x
) ) )  <->  A. i  e.  N.  ( j  <N 
i  ->  ( ( F `  i )  <R  ( [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) )
9998rexbii 2504 . . . . . 6  |-  ( E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <R  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  k )  +R  x
) ) )  <->  E. j  e.  N.  A. i  e. 
N.  ( j  <N 
i  ->  ( ( F `  i )  <R  ( [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) )
10090, 99sylib 122 . . . . 5  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  E. j  e.  N.  A. i  e. 
N.  ( j  <N 
i  ->  ( ( F `  i )  <R  ( [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) )
101100ex 115 . . . 4  |-  ( ( ( ph  /\  (
a  e.  P.  /\  A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  ( j  <N 
k  ->  ( (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( a  +P.  b
)  /\  a  <P  ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  b )
) ) ) )  /\  x  e.  R. )  ->  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( F `  i
)  <R  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) ) )
102101ralrimiva 2570 . . 3  |-  ( (
ph  /\  ( a  e.  P.  /\  A. b  e.  P.  E. j  e. 
N.  A. k  e.  N.  ( j  <N  k  ->  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  <P  (
a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  b ) ) ) ) )  ->  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( F `  i
)  <R  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) ) )
103 oveq1 5932 . . . . . . . . . 10  |-  ( y  =  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  ->  ( y  +R  x )  =  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x ) )
104103breq2d 4046 . . . . . . . . 9  |-  ( y  =  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  ->  ( ( F `  i
)  <R  ( y  +R  x )  <->  ( F `  i )  <R  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  x
) ) )
105 breq1 4037 . . . . . . . . 9  |-  ( y  =  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  ->  ( y  <R  ( ( F `  i )  +R  x )  <->  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i
)  +R  x ) ) )
106104, 105anbi12d 473 . . . . . . . 8  |-  ( y  =  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  ->  ( ( ( F `  i )  <R  (
y  +R  x )  /\  y  <R  (
( F `  i
)  +R  x ) )  <->  ( ( F `
 i )  <R 
( [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) )
107106imbi2d 230 . . . . . . 7  |-  ( y  =  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  ->  ( ( j  <N  i  ->  ( ( F `  i )  <R  (
y  +R  x )  /\  y  <R  (
( F `  i
)  +R  x ) ) )  <->  ( j  <N  i  ->  ( ( F `  i )  <R  ( [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) ) )
108107rexralbidv 2523 . . . . . 6  |-  ( y  =  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  ->  ( E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( F `  i
)  <R  ( y  +R  x )  /\  y  <R  ( ( F `  i )  +R  x
) ) )  <->  E. j  e.  N.  A. i  e. 
N.  ( j  <N 
i  ->  ( ( F `  i )  <R  ( [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) ) )
109108imbi2d 230 . . . . 5  |-  ( y  =  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  ->  ( ( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( F `  i
)  <R  ( y  +R  x )  /\  y  <R  ( ( F `  i )  +R  x
) ) ) )  <-> 
( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( F `  i
)  <R  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) ) ) )
110109ralbidv 2497 . . . 4  |-  ( y  =  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  ->  ( A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( F `  i
)  <R  ( y  +R  x )  /\  y  <R  ( ( F `  i )  +R  x
) ) ) )  <->  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( F `  i
)  <R  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) ) ) )
111110rspcev 2868 . . 3  |-  ( ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  e.  R.  /\ 
A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( F `  i
)  <R  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) ) )  ->  E. y  e.  R.  A. x  e. 
R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( F `  i
)  <R  ( y  +R  x )  /\  y  <R  ( ( F `  i )  +R  x
) ) ) ) )
11210, 102, 111syl2anc 411 . 2  |-  ( (
ph  /\  ( a  e.  P.  /\  A. b  e.  P.  E. j  e. 
N.  A. k  e.  N.  ( j  <N  k  ->  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  <P  (
a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  b ) ) ) ) )  ->  E. y  e.  R.  A. x  e. 
R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( F `  i
)  <R  ( y  +R  x )  /\  y  <R  ( ( F `  i )  +R  x
) ) ) ) )
1138, 112rexlimddv 2619 1  |-  ( ph  ->  E. y  e.  R.  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e. 
N.  ( j  <N 
i  ->  ( ( F `  i )  <R  ( y  +R  x
)  /\  y  <R  ( ( F `  i
)  +R  x ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476   E!wreu 2477   <.cop 3626   class class class wbr 4034    |-> cmpt 4095   -->wf 5255   ` cfv 5259   iota_crio 5879  (class class class)co 5925   1oc1o 6476   [cec 6599   N.cnpi 7356    <N clti 7359    ~Q ceq 7363   *Qcrq 7368    <Q cltq 7369   P.cnp 7375   1Pc1p 7376    +P. cpp 7377    <P cltp 7379    ~R cer 7380   R.cnr 7381   0Rc0r 7382   1Rc1r 7383    +R cplr 7385    <R cltr 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-i1p 7551  df-iplp 7552  df-iltp 7554  df-enr 7810  df-nr 7811  df-plr 7812  df-ltr 7814  df-0r 7815  df-1r 7816
This theorem is referenced by:  caucvgsrlemoffres  7884
  Copyright terms: Public domain W3C validator