ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralbid Unicode version

Theorem ralbid 2468
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 27-Jun-1998.)
Hypotheses
Ref Expression
ralbid.1  |-  F/ x ph
ralbid.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
ralbid  |-  ( ph  ->  ( A. x  e.  A  ps  <->  A. x  e.  A  ch )
)

Proof of Theorem ralbid
StepHypRef Expression
1 ralbid.1 . 2  |-  F/ x ph
2 ralbid.2 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
32adantr 274 . 2  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
41, 3ralbida 2464 1  |-  ( ph  ->  ( A. x  e.  A  ps  <->  A. x  e.  A  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   F/wnf 1453    e. wcel 2141   A.wral 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-4 1503
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-ral 2453
This theorem is referenced by:  ralbidv  2470  sbcralt  3031  riota5f  5833  mkvprop  7134  lble  8863  ellimc3apf  13423  strcollnft  14019
  Copyright terms: Public domain W3C validator