ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mkvprop Unicode version

Theorem mkvprop 7217
Description: Markov's Principle expressed in terms of propositions (or more precisely, the  A  =  om case is Markov's Principle). (Contributed by Jim Kingdon, 19-Mar-2023.)
Assertion
Ref Expression
mkvprop  |-  ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  ->  E. n  e.  A  ph )
Distinct variable group:    A, n
Allowed substitution hint:    ph( n)

Proof of Theorem mkvprop
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 nfv 1539 . . . . . . 7  |-  F/ n  A  e. Markov
2 nfra1 2525 . . . . . . 7  |-  F/ n A. n  e.  A DECID  ph
31, 2nfan 1576 . . . . . 6  |-  F/ n
( A  e. Markov  /\  A. n  e.  A DECID  ph )
4 simpr 110 . . . . . . . . 9  |-  ( ( ( A  e. Markov  /\  A. n  e.  A DECID  ph )  /\  n  e.  A )  ->  n  e.  A )
5 0lt2o 6494 . . . . . . . . . . . 12  |-  (/)  e.  2o
65a1i 9 . . . . . . . . . . 11  |-  ( ( A. n  e.  A DECID  ph  /\  n  e.  A )  -> 
(/)  e.  2o )
7 1lt2o 6495 . . . . . . . . . . . 12  |-  1o  e.  2o
87a1i 9 . . . . . . . . . . 11  |-  ( ( A. n  e.  A DECID  ph  /\  n  e.  A )  ->  1o  e.  2o )
9 rsp 2541 . . . . . . . . . . . 12  |-  ( A. n  e.  A DECID  ph  ->  (
n  e.  A  -> DECID  ph )
)
109imp 124 . . . . . . . . . . 11  |-  ( ( A. n  e.  A DECID  ph  /\  n  e.  A )  -> DECID  ph )
116, 8, 10ifcldcd 3593 . . . . . . . . . 10  |-  ( ( A. n  e.  A DECID  ph  /\  n  e.  A )  ->  if ( ph ,  (/)
,  1o )  e.  2o )
1211adantll 476 . . . . . . . . 9  |-  ( ( ( A  e. Markov  /\  A. n  e.  A DECID  ph )  /\  n  e.  A )  ->  if ( ph ,  (/)
,  1o )  e.  2o )
13 eqid 2193 . . . . . . . . . 10  |-  ( n  e.  A  |->  if (
ph ,  (/) ,  1o ) )  =  ( n  e.  A  |->  if ( ph ,  (/) ,  1o ) )
1413fvmpt2 5641 . . . . . . . . 9  |-  ( ( n  e.  A  /\  if ( ph ,  (/) ,  1o )  e.  2o )  ->  ( ( n  e.  A  |->  if (
ph ,  (/) ,  1o ) ) `  n
)  =  if (
ph ,  (/) ,  1o ) )
154, 12, 14syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e. Markov  /\  A. n  e.  A DECID  ph )  /\  n  e.  A )  ->  ( ( n  e.  A  |->  if ( ph ,  (/) ,  1o ) ) `  n )  =  if ( ph ,  (/) ,  1o ) )
1615eqeq1d 2202 . . . . . . 7  |-  ( ( ( A  e. Markov  /\  A. n  e.  A DECID  ph )  /\  n  e.  A )  ->  ( ( ( n  e.  A  |->  if (
ph ,  (/) ,  1o ) ) `  n
)  =  1o  <->  if ( ph ,  (/) ,  1o )  =  1o )
)
17 1n0 6485 . . . . . . . . . 10  |-  1o  =/=  (/)
1817nesymi 2410 . . . . . . . . 9  |-  -.  (/)  =  1o
19 iftrue 3562 . . . . . . . . . 10  |-  ( ph  ->  if ( ph ,  (/)
,  1o )  =  (/) )
2019eqeq1d 2202 . . . . . . . . 9  |-  ( ph  ->  ( if ( ph ,  (/) ,  1o )  =  1o  <->  (/)  =  1o ) )
2118, 20mtbiri 676 . . . . . . . 8  |-  ( ph  ->  -.  if ( ph ,  (/) ,  1o )  =  1o )
2221con2i 628 . . . . . . 7  |-  ( if ( ph ,  (/) ,  1o )  =  1o 
->  -.  ph )
2316, 22biimtrdi 163 . . . . . 6  |-  ( ( ( A  e. Markov  /\  A. n  e.  A DECID  ph )  /\  n  e.  A )  ->  ( ( ( n  e.  A  |->  if (
ph ,  (/) ,  1o ) ) `  n
)  =  1o  ->  -. 
ph ) )
243, 23ralimdaa 2560 . . . . 5  |-  ( ( A  e. Markov  /\  A. n  e.  A DECID  ph )  ->  ( A. n  e.  A  ( ( n  e.  A  |->  if ( ph ,  (/) ,  1o ) ) `  n )  =  1o  ->  A. n  e.  A  -.  ph )
)
2524con3d 632 . . . 4  |-  ( ( A  e. Markov  /\  A. n  e.  A DECID  ph )  ->  ( -.  A. n  e.  A  -.  ph  ->  -.  A. n  e.  A  ( (
n  e.  A  |->  if ( ph ,  (/) ,  1o ) ) `  n )  =  1o ) )
26253impia 1202 . . 3  |-  ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  ->  -.  A. n  e.  A  ( (
n  e.  A  |->  if ( ph ,  (/) ,  1o ) ) `  n )  =  1o )
27 mptexg 5783 . . . . 5  |-  ( A  e. Markov  ->  ( n  e.  A  |->  if ( ph ,  (/) ,  1o ) )  e.  _V )
28273ad2ant1 1020 . . . 4  |-  ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  ->  ( n  e.  A  |->  if (
ph ,  (/) ,  1o ) )  e.  _V )
29 ismkv 7212 . . . . . 6  |-  ( A  e. Markov  ->  ( A  e. Markov  <->  A. f ( f : A --> 2o  ->  ( -.  A. n  e.  A  ( f `  n
)  =  1o  ->  E. n  e.  A  ( f `  n )  =  (/) ) ) ) )
3029ibi 176 . . . . 5  |-  ( A  e. Markov  ->  A. f ( f : A --> 2o  ->  ( -.  A. n  e.  A  ( f `  n )  =  1o 
->  E. n  e.  A  ( f `  n
)  =  (/) ) ) )
31303ad2ant1 1020 . . . 4  |-  ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  ->  A. f
( f : A --> 2o  ->  ( -.  A. n  e.  A  (
f `  n )  =  1o  ->  E. n  e.  A  ( f `  n )  =  (/) ) ) )
32 nfra1 2525 . . . . . . 7  |-  F/ n A. n  e.  A  -.  ph
3332nfn 1669 . . . . . 6  |-  F/ n  -.  A. n  e.  A  -.  ph
341, 2, 33nf3an 1577 . . . . 5  |-  F/ n
( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )
35113ad2antl2 1162 . . . . 5  |-  ( ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  /\  n  e.  A )  ->  if ( ph ,  (/) ,  1o )  e.  2o )
3634, 35, 13fmptdf 5715 . . . 4  |-  ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  ->  ( n  e.  A  |->  if (
ph ,  (/) ,  1o ) ) : A --> 2o )
37 feq1 5386 . . . . . 6  |-  ( f  =  ( n  e.  A  |->  if ( ph ,  (/) ,  1o ) )  ->  ( f : A --> 2o  <->  ( n  e.  A  |->  if (
ph ,  (/) ,  1o ) ) : A --> 2o ) )
38 nfmpt1 4122 . . . . . . . . . 10  |-  F/_ n
( n  e.  A  |->  if ( ph ,  (/)
,  1o ) )
3938nfeq2 2348 . . . . . . . . 9  |-  F/ n  f  =  ( n  e.  A  |->  if (
ph ,  (/) ,  1o ) )
40 fveq1 5553 . . . . . . . . . 10  |-  ( f  =  ( n  e.  A  |->  if ( ph ,  (/) ,  1o ) )  ->  ( f `  n )  =  ( ( n  e.  A  |->  if ( ph ,  (/)
,  1o ) ) `
 n ) )
4140eqeq1d 2202 . . . . . . . . 9  |-  ( f  =  ( n  e.  A  |->  if ( ph ,  (/) ,  1o ) )  ->  ( (
f `  n )  =  1o  <->  ( ( n  e.  A  |->  if (
ph ,  (/) ,  1o ) ) `  n
)  =  1o ) )
4239, 41ralbid 2492 . . . . . . . 8  |-  ( f  =  ( n  e.  A  |->  if ( ph ,  (/) ,  1o ) )  ->  ( A. n  e.  A  (
f `  n )  =  1o  <->  A. n  e.  A  ( ( n  e.  A  |->  if ( ph ,  (/) ,  1o ) ) `  n )  =  1o ) )
4342notbid 668 . . . . . . 7  |-  ( f  =  ( n  e.  A  |->  if ( ph ,  (/) ,  1o ) )  ->  ( -.  A. n  e.  A  ( f `  n )  =  1o  <->  -.  A. n  e.  A  ( (
n  e.  A  |->  if ( ph ,  (/) ,  1o ) ) `  n )  =  1o ) )
4440eqeq1d 2202 . . . . . . . 8  |-  ( f  =  ( n  e.  A  |->  if ( ph ,  (/) ,  1o ) )  ->  ( (
f `  n )  =  (/)  <->  ( ( n  e.  A  |->  if (
ph ,  (/) ,  1o ) ) `  n
)  =  (/) ) )
4539, 44rexbid 2493 . . . . . . 7  |-  ( f  =  ( n  e.  A  |->  if ( ph ,  (/) ,  1o ) )  ->  ( E. n  e.  A  (
f `  n )  =  (/)  <->  E. n  e.  A  ( ( n  e.  A  |->  if ( ph ,  (/) ,  1o ) ) `  n )  =  (/) ) )
4643, 45imbi12d 234 . . . . . 6  |-  ( f  =  ( n  e.  A  |->  if ( ph ,  (/) ,  1o ) )  ->  ( ( -.  A. n  e.  A  ( f `  n
)  =  1o  ->  E. n  e.  A  ( f `  n )  =  (/) )  <->  ( -.  A. n  e.  A  ( ( n  e.  A  |->  if ( ph ,  (/)
,  1o ) ) `
 n )  =  1o  ->  E. n  e.  A  ( (
n  e.  A  |->  if ( ph ,  (/) ,  1o ) ) `  n )  =  (/) ) ) )
4737, 46imbi12d 234 . . . . 5  |-  ( f  =  ( n  e.  A  |->  if ( ph ,  (/) ,  1o ) )  ->  ( (
f : A --> 2o  ->  ( -.  A. n  e.  A  ( f `  n )  =  1o 
->  E. n  e.  A  ( f `  n
)  =  (/) ) )  <-> 
( ( n  e.  A  |->  if ( ph ,  (/) ,  1o ) ) : A --> 2o  ->  ( -.  A. n  e.  A  ( ( n  e.  A  |->  if (
ph ,  (/) ,  1o ) ) `  n
)  =  1o  ->  E. n  e.  A  ( ( n  e.  A  |->  if ( ph ,  (/)
,  1o ) ) `
 n )  =  (/) ) ) ) )
4847spcgv 2847 . . . 4  |-  ( ( n  e.  A  |->  if ( ph ,  (/) ,  1o ) )  e. 
_V  ->  ( A. f
( f : A --> 2o  ->  ( -.  A. n  e.  A  (
f `  n )  =  1o  ->  E. n  e.  A  ( f `  n )  =  (/) ) )  ->  (
( n  e.  A  |->  if ( ph ,  (/)
,  1o ) ) : A --> 2o  ->  ( -.  A. n  e.  A  ( ( n  e.  A  |->  if (
ph ,  (/) ,  1o ) ) `  n
)  =  1o  ->  E. n  e.  A  ( ( n  e.  A  |->  if ( ph ,  (/)
,  1o ) ) `
 n )  =  (/) ) ) ) )
4928, 31, 36, 48syl3c 63 . . 3  |-  ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  ->  ( -.  A. n  e.  A  ( ( n  e.  A  |->  if ( ph ,  (/)
,  1o ) ) `
 n )  =  1o  ->  E. n  e.  A  ( (
n  e.  A  |->  if ( ph ,  (/) ,  1o ) ) `  n )  =  (/) ) )
5026, 49mpd 13 . 2  |-  ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  ->  E. n  e.  A  ( (
n  e.  A  |->  if ( ph ,  (/) ,  1o ) ) `  n )  =  (/) )
51 simpr 110 . . . . . 6  |-  ( ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  /\  n  e.  A )  ->  n  e.  A )
5251, 35, 14syl2anc 411 . . . . 5  |-  ( ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  /\  n  e.  A )  ->  (
( n  e.  A  |->  if ( ph ,  (/)
,  1o ) ) `
 n )  =  if ( ph ,  (/)
,  1o ) )
5352eqeq1d 2202 . . . 4  |-  ( ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  /\  n  e.  A )  ->  (
( ( n  e.  A  |->  if ( ph ,  (/) ,  1o ) ) `  n )  =  (/)  <->  if ( ph ,  (/)
,  1o )  =  (/) ) )
5493ad2ant2 1021 . . . . . . 7  |-  ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  ->  ( n  e.  A  -> DECID  ph ) )
5554imp 124 . . . . . 6  |-  ( ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  /\  n  e.  A )  -> DECID  ph )
5617neii 2366 . . . . . . . . 9  |-  -.  1o  =  (/)
57 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  /\  n  e.  A )  /\  -.  ph )  ->  -.  ph )
5857iffalsed 3567 . . . . . . . . . 10  |-  ( ( ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  /\  n  e.  A )  /\  -.  ph )  ->  if ( ph ,  (/) ,  1o )  =  1o )
5958eqeq1d 2202 . . . . . . . . 9  |-  ( ( ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  /\  n  e.  A )  /\  -.  ph )  ->  ( if ( ph ,  (/) ,  1o )  =  (/)  <->  1o  =  (/) ) )
6056, 59mtbiri 676 . . . . . . . 8  |-  ( ( ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  /\  n  e.  A )  /\  -.  ph )  ->  -.  if ( ph ,  (/) ,  1o )  =  (/) )
6160ex 115 . . . . . . 7  |-  ( ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  /\  n  e.  A )  ->  ( -.  ph  ->  -.  if ( ph ,  (/) ,  1o )  =  (/) ) )
6261con2d 625 . . . . . 6  |-  ( ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  /\  n  e.  A )  ->  ( if ( ph ,  (/) ,  1o )  =  (/)  ->  -.  -.  ph )
)
63 notnotrdc 844 . . . . . 6  |-  (DECID  ph  ->  ( -.  -.  ph  ->  ph ) )
6455, 62, 63sylsyld 58 . . . . 5  |-  ( ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  /\  n  e.  A )  ->  ( if ( ph ,  (/) ,  1o )  =  (/)  ->  ph ) )
6564, 19impbid1 142 . . . 4  |-  ( ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  /\  n  e.  A )  ->  ( if ( ph ,  (/) ,  1o )  =  (/)  <->  ph ) )
6653, 65bitrd 188 . . 3  |-  ( ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  /\  n  e.  A )  ->  (
( ( n  e.  A  |->  if ( ph ,  (/) ,  1o ) ) `  n )  =  (/)  <->  ph ) )
6734, 66rexbida 2489 . 2  |-  ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  ->  ( E. n  e.  A  (
( n  e.  A  |->  if ( ph ,  (/)
,  1o ) ) `
 n )  =  (/) 
<->  E. n  e.  A  ph ) )
6850, 67mpbid 147 1  |-  ( ( A  e. Markov  /\  A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  ->  E. n  e.  A  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 835    /\ w3a 980   A.wal 1362    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   _Vcvv 2760   (/)c0 3446   ifcif 3557    |-> cmpt 4090   -->wf 5250   ` cfv 5254   1oc1o 6462   2oc2o 6463  Markovcmarkov 7210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1o 6469  df-2o 6470  df-markov 7211
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator