Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexeqbii | Unicode version |
Description: Equality deduction for restricted existential quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
raleqbii.1 | |
raleqbii.2 |
Ref | Expression |
---|---|
rexeqbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbii.1 | . . . 4 | |
2 | 1 | eleq2i 2237 | . . 3 |
3 | raleqbii.2 | . . 3 | |
4 | 2, 3 | anbi12i 457 | . 2 |
5 | 4 | rexbii2 2481 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1348 wcel 2141 wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 df-rex 2454 |
This theorem is referenced by: exmidsbthrlem 14054 |
Copyright terms: Public domain | W3C validator |