| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexeqbii | Unicode version | ||
| Description: Equality deduction for restricted existential quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| raleqbii.1 |
|
| raleqbii.2 |
|
| Ref | Expression |
|---|---|
| rexeqbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbii.1 |
. . . 4
| |
| 2 | 1 | eleq2i 2272 |
. . 3
|
| 3 | raleqbii.2 |
. . 3
| |
| 4 | 2, 3 | anbi12i 460 |
. 2
|
| 5 | 4 | rexbii2 2517 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 df-rex 2490 |
| This theorem is referenced by: exmidsbthrlem 15961 |
| Copyright terms: Public domain | W3C validator |