ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeqbii GIF version

Theorem rexeqbii 2392
Description: Equality deduction for restricted existential quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
raleqbii.1 𝐴 = 𝐵
raleqbii.2 (𝜓𝜒)
Assertion
Ref Expression
rexeqbii (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒)

Proof of Theorem rexeqbii
StepHypRef Expression
1 raleqbii.1 . . . 4 𝐴 = 𝐵
21eleq2i 2155 . . 3 (𝑥𝐴𝑥𝐵)
3 raleqbii.2 . . 3 (𝜓𝜒)
42, 3anbi12i 449 . 2 ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒))
54rexbii2 2390 1 (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1290  wcel 1439  wrex 2361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1382  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-4 1446  ax-17 1465  ax-ial 1473  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-cleq 2082  df-clel 2085  df-rex 2366
This theorem is referenced by:  exmidsbthrlem  12178
  Copyright terms: Public domain W3C validator