ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeqbii GIF version

Theorem rexeqbii 2520
Description: Equality deduction for restricted existential quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
raleqbii.1 𝐴 = 𝐵
raleqbii.2 (𝜓𝜒)
Assertion
Ref Expression
rexeqbii (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒)

Proof of Theorem rexeqbii
StepHypRef Expression
1 raleqbii.1 . . . 4 𝐴 = 𝐵
21eleq2i 2273 . . 3 (𝑥𝐴𝑥𝐵)
3 raleqbii.2 . . 3 (𝜓𝜒)
42, 3anbi12i 460 . 2 ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒))
54rexbii2 2518 1 (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  wcel 2177  wrex 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-cleq 2199  df-clel 2202  df-rex 2491
This theorem is referenced by:  exmidsbthrlem  16133
  Copyright terms: Public domain W3C validator