ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralbiia Unicode version

Theorem ralbiia 2491
Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.)
Hypothesis
Ref Expression
ralbiia.1  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralbiia  |-  ( A. x  e.  A  ph  <->  A. x  e.  A  ps )

Proof of Theorem ralbiia
StepHypRef Expression
1 ralbiia.1 . . 3  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
21pm5.74i 180 . 2  |-  ( ( x  e.  A  ->  ph )  <->  ( x  e.  A  ->  ps )
)
32ralbii2 2487 1  |-  ( A. x  e.  A  ph  <->  A. x  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2148   A.wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449
This theorem depends on definitions:  df-bi 117  df-ral 2460
This theorem is referenced by:  frind  4353  poinxp  4696  soinxp  4697  seinxp  4698  dffun8  5245  funcnv3  5279  fncnv  5283  fnres  5333  fvreseq  5620  isoini2  5820  smores  6293  resixp  6733  pw1dc1  6913  finomni  7138  caucvgre  10990  xpscf  12766  bj-charfundcALT  14564
  Copyright terms: Public domain W3C validator