ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralbiia Unicode version

Theorem ralbiia 2484
Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.)
Hypothesis
Ref Expression
ralbiia.1  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralbiia  |-  ( A. x  e.  A  ph  <->  A. x  e.  A  ps )

Proof of Theorem ralbiia
StepHypRef Expression
1 ralbiia.1 . . 3  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
21pm5.74i 179 . 2  |-  ( ( x  e.  A  ->  ph )  <->  ( x  e.  A  ->  ps )
)
32ralbii2 2480 1  |-  ( A. x  e.  A  ph  <->  A. x  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2141   A.wral 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442
This theorem depends on definitions:  df-bi 116  df-ral 2453
This theorem is referenced by:  frind  4337  poinxp  4680  soinxp  4681  seinxp  4682  dffun8  5226  funcnv3  5260  fncnv  5264  fnres  5314  fvreseq  5599  isoini2  5798  smores  6271  resixp  6711  pw1dc1  6891  finomni  7116  caucvgre  10945  bj-charfundcALT  13844
  Copyright terms: Public domain W3C validator