ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexbii2 Unicode version

Theorem rexbii2 2488
Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.)
Hypothesis
Ref Expression
rexbii2.1  |-  ( ( x  e.  A  /\  ph )  <->  ( x  e.  B  /\  ps )
)
Assertion
Ref Expression
rexbii2  |-  ( E. x  e.  A  ph  <->  E. x  e.  B  ps )

Proof of Theorem rexbii2
StepHypRef Expression
1 rexbii2.1 . . 3  |-  ( ( x  e.  A  /\  ph )  <->  ( x  e.  B  /\  ps )
)
21exbii 1605 . 2  |-  ( E. x ( x  e.  A  /\  ph )  <->  E. x ( x  e.  B  /\  ps )
)
3 df-rex 2461 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
4 df-rex 2461 . 2  |-  ( E. x  e.  B  ps  <->  E. x ( x  e.  B  /\  ps )
)
52, 3, 43bitr4i 212 1  |-  ( E. x  e.  A  ph  <->  E. x  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1492    e. wcel 2148   E.wrex 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-rex 2461
This theorem is referenced by:  rexeqbii  2490  rexbiia  2492  rexrab  2902  rexdifpr  3622  rexdifsn  3726  bnd2  4175  suplocsrlemb  7807  rexuz2  9583  rexrp  9678  rexuz3  11001
  Copyright terms: Public domain W3C validator