ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexbii2 Unicode version

Theorem rexbii2 2508
Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.)
Hypothesis
Ref Expression
rexbii2.1  |-  ( ( x  e.  A  /\  ph )  <->  ( x  e.  B  /\  ps )
)
Assertion
Ref Expression
rexbii2  |-  ( E. x  e.  A  ph  <->  E. x  e.  B  ps )

Proof of Theorem rexbii2
StepHypRef Expression
1 rexbii2.1 . . 3  |-  ( ( x  e.  A  /\  ph )  <->  ( x  e.  B  /\  ps )
)
21exbii 1619 . 2  |-  ( E. x ( x  e.  A  /\  ph )  <->  E. x ( x  e.  B  /\  ps )
)
3 df-rex 2481 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
4 df-rex 2481 . 2  |-  ( E. x  e.  B  ps  <->  E. x ( x  e.  B  /\  ps )
)
52, 3, 43bitr4i 212 1  |-  ( E. x  e.  A  ph  <->  E. x  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1506    e. wcel 2167   E.wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-rex 2481
This theorem is referenced by:  rexeqbii  2510  rexbiia  2512  rexrab  2927  rexdifpr  3650  rexdifsn  3754  bnd2  4206  suplocsrlemb  7873  rexuz2  9655  rexrp  9751  rexuz3  11155  4sqexercise1  12567
  Copyright terms: Public domain W3C validator