ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexbii2 Unicode version

Theorem rexbii2 2390
Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.)
Hypothesis
Ref Expression
rexbii2.1  |-  ( ( x  e.  A  /\  ph )  <->  ( x  e.  B  /\  ps )
)
Assertion
Ref Expression
rexbii2  |-  ( E. x  e.  A  ph  <->  E. x  e.  B  ps )

Proof of Theorem rexbii2
StepHypRef Expression
1 rexbii2.1 . . 3  |-  ( ( x  e.  A  /\  ph )  <->  ( x  e.  B  /\  ps )
)
21exbii 1542 . 2  |-  ( E. x ( x  e.  A  /\  ph )  <->  E. x ( x  e.  B  /\  ps )
)
3 df-rex 2366 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
4 df-rex 2366 . 2  |-  ( E. x  e.  B  ps  <->  E. x ( x  e.  B  /\  ps )
)
52, 3, 43bitr4i 211 1  |-  ( E. x  e.  A  ph  <->  E. x  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E.wex 1427    e. wcel 1439   E.wrex 2361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1382  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-4 1446  ax-ial 1473
This theorem depends on definitions:  df-bi 116  df-rex 2366
This theorem is referenced by:  rexeqbii  2392  rexbiia  2394  rexrab  2779  rexdifsn  3578  bnd2  4014  rexuz2  9123  rexrp  9210  rexuz3  10477
  Copyright terms: Public domain W3C validator