| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexbii2 | Unicode version | ||
| Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.) |
| Ref | Expression |
|---|---|
| rexbii2.1 |
|
| Ref | Expression |
|---|---|
| rexbii2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexbii2.1 |
. . 3
| |
| 2 | 1 | exbii 1651 |
. 2
|
| 3 | df-rex 2514 |
. 2
| |
| 4 | df-rex 2514 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-rex 2514 |
| This theorem is referenced by: rexeqbii 2543 rexbiia 2545 rexrab 2966 rexdifpr 3694 rexdifsn 3799 bnd2 4256 suplocsrlemb 7989 rexuz2 9772 rexrp 9868 rexuz3 11496 4sqexercise1 12916 |
| Copyright terms: Public domain | W3C validator |