Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rgenm | Unicode version |
Description: Generalization rule that eliminates an inhabited class requirement. (Contributed by Jim Kingdon, 5-Aug-2018.) |
Ref | Expression |
---|---|
rgenm.1 |
Ref | Expression |
---|---|
rgenm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfe1 1489 | . . . . 5 | |
2 | rgenm.1 | . . . . . 6 | |
3 | 2 | ex 114 | . . . . 5 |
4 | 1, 3 | alrimi 1515 | . . . 4 |
5 | 19.38 1669 | . . . 4 | |
6 | 4, 5 | ax-mp 5 | . . 3 |
7 | pm5.4 248 | . . . 4 | |
8 | 7 | albii 1463 | . . 3 |
9 | 6, 8 | mpbi 144 | . 2 |
10 | df-ral 2453 | . 2 | |
11 | 9, 10 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1346 wex 1485 wcel 2141 wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-ral 2453 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |