Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rgenm Unicode version

Theorem rgenm 3433
 Description: Generalization rule that eliminates an inhabited class requirement. (Contributed by Jim Kingdon, 5-Aug-2018.)
Hypothesis
Ref Expression
rgenm.1
Assertion
Ref Expression
rgenm
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem rgenm
StepHypRef Expression
1 nfe1 1455 . . . . 5
2 rgenm.1 . . . . . 6
32ex 114 . . . . 5
41, 3alrimi 1485 . . . 4
5 19.38 1637 . . . 4
64, 5ax-mp 5 . . 3
7 pm5.4 248 . . . 4
87albii 1429 . . 3
96, 8mpbi 144 . 2
10 df-ral 2396 . 2
119, 10mpbir 145 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103  wal 1312  wex 1451   wcel 1463  wral 2391 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-4 1470  ax-ial 1497  ax-i5r 1498 This theorem depends on definitions:  df-bi 116  df-nf 1420  df-ral 2396 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator