ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ral0 Unicode version

Theorem ral0 3562
Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
ral0  |-  A. x  e.  (/)  ph

Proof of Theorem ral0
StepHypRef Expression
1 noel 3464 . . 3  |-  -.  x  e.  (/)
21pm2.21i 647 . 2  |-  ( x  e.  (/)  ->  ph )
32rgen 2559 1  |-  A. x  e.  (/)  ph
Colors of variables: wff set class
Syntax hints:    e. wcel 2176   A.wral 2484   (/)c0 3460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-dif 3168  df-nul 3461
This theorem is referenced by:  0iin  3986  po0  4359  so0  4374  we0  4409  ord0  4439  omsinds  4671  mpt0  5405  iso0  5888  ixp0x  6815  ac6sfi  6997  fimax2gtri  7000  dcfi  7085  nnnninfeq2  7233  nninfisollem0  7234  finomni  7244  uzsinds  10591  seq3f1olemp  10662  swrd0g  11116  swrdspsleq  11123  rexfiuz  11333  fimaxre2  11571  2prm  12482  bj-nntrans  15924
  Copyright terms: Public domain W3C validator