ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ral0 Unicode version

Theorem ral0 3553
Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
ral0  |-  A. x  e.  (/)  ph

Proof of Theorem ral0
StepHypRef Expression
1 noel 3455 . . 3  |-  -.  x  e.  (/)
21pm2.21i 647 . 2  |-  ( x  e.  (/)  ->  ph )
32rgen 2550 1  |-  A. x  e.  (/)  ph
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   A.wral 2475   (/)c0 3451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-dif 3159  df-nul 3452
This theorem is referenced by:  0iin  3976  po0  4347  so0  4362  we0  4397  ord0  4427  omsinds  4659  mpt0  5388  iso0  5867  ixp0x  6794  ac6sfi  6968  fimax2gtri  6971  dcfi  7056  nnnninfeq2  7204  nninfisollem0  7205  finomni  7215  uzsinds  10553  seq3f1olemp  10624  rexfiuz  11171  fimaxre2  11409  2prm  12320  bj-nntrans  15681
  Copyright terms: Public domain W3C validator