ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ral0 Unicode version

Theorem ral0 3536
Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
ral0  |-  A. x  e.  (/)  ph

Proof of Theorem ral0
StepHypRef Expression
1 noel 3438 . . 3  |-  -.  x  e.  (/)
21pm2.21i 647 . 2  |-  ( x  e.  (/)  ->  ph )
32rgen 2540 1  |-  A. x  e.  (/)  ph
Colors of variables: wff set class
Syntax hints:    e. wcel 2158   A.wral 2465   (/)c0 3434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-v 2751  df-dif 3143  df-nul 3435
This theorem is referenced by:  0iin  3957  po0  4323  so0  4338  we0  4373  ord0  4403  omsinds  4633  mpt0  5355  iso0  5831  ixp0x  6739  ac6sfi  6911  fimax2gtri  6914  dcfi  6993  nnnninfeq2  7140  nninfisollem0  7141  finomni  7151  uzsinds  10455  seq3f1olemp  10515  rexfiuz  11011  fimaxre2  11248  2prm  12140  bj-nntrans  14974
  Copyright terms: Public domain W3C validator