| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ral0 | Unicode version | ||
| Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) |
| Ref | Expression |
|---|---|
| ral0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3495 |
. . 3
| |
| 2 | 1 | pm2.21i 649 |
. 2
|
| 3 | 2 | rgen 2583 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-dif 3199 df-nul 3492 |
| This theorem is referenced by: 0iin 4024 po0 4402 so0 4417 we0 4452 ord0 4482 omsinds 4714 mpt0 5451 iso0 5941 ixp0x 6873 ac6sfi 7060 fimax2gtri 7063 dcfi 7148 nnnninfeq2 7296 nninfisollem0 7297 finomni 7307 uzsinds 10666 seq3f1olemp 10737 swrd0g 11192 swrdspsleq 11199 rexfiuz 11500 fimaxre2 11738 2prm 12649 bj-nntrans 16314 |
| Copyright terms: Public domain | W3C validator |