ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ral0 Unicode version

Theorem ral0 3593
Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
ral0  |-  A. x  e.  (/)  ph

Proof of Theorem ral0
StepHypRef Expression
1 noel 3495 . . 3  |-  -.  x  e.  (/)
21pm2.21i 649 . 2  |-  ( x  e.  (/)  ->  ph )
32rgen 2583 1  |-  A. x  e.  (/)  ph
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   A.wral 2508   (/)c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-dif 3199  df-nul 3492
This theorem is referenced by:  0iin  4024  po0  4402  so0  4417  we0  4452  ord0  4482  omsinds  4714  mpt0  5451  iso0  5941  ixp0x  6873  ac6sfi  7060  fimax2gtri  7063  dcfi  7148  nnnninfeq2  7296  nninfisollem0  7297  finomni  7307  uzsinds  10666  seq3f1olemp  10737  swrd0g  11192  swrdspsleq  11199  rexfiuz  11500  fimaxre2  11738  2prm  12649  bj-nntrans  16314
  Copyright terms: Public domain W3C validator