ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ral0 Unicode version

Theorem ral0 3570
Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
ral0  |-  A. x  e.  (/)  ph

Proof of Theorem ral0
StepHypRef Expression
1 noel 3472 . . 3  |-  -.  x  e.  (/)
21pm2.21i 647 . 2  |-  ( x  e.  (/)  ->  ph )
32rgen 2561 1  |-  A. x  e.  (/)  ph
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   A.wral 2486   (/)c0 3468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-dif 3176  df-nul 3469
This theorem is referenced by:  0iin  4000  po0  4376  so0  4391  we0  4426  ord0  4456  omsinds  4688  mpt0  5423  iso0  5909  ixp0x  6836  ac6sfi  7021  fimax2gtri  7024  dcfi  7109  nnnninfeq2  7257  nninfisollem0  7258  finomni  7268  uzsinds  10626  seq3f1olemp  10697  swrd0g  11151  swrdspsleq  11158  rexfiuz  11415  fimaxre2  11653  2prm  12564  bj-nntrans  16086
  Copyright terms: Public domain W3C validator