ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfe1 Unicode version

Theorem nfe1 1519
Description:  x is not free in  E. x ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfe1  |-  F/ x E. x ph

Proof of Theorem nfe1
StepHypRef Expression
1 hbe1 1518 . 2  |-  ( E. x ph  ->  A. x E. x ph )
21nfi 1485 1  |-  F/ x E. x ph
Colors of variables: wff set class
Syntax hints:   F/wnf 1483   E.wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1472  ax-ie1 1516
This theorem depends on definitions:  df-bi 117  df-nf 1484
This theorem is referenced by:  nf3  1692  sb4or  1856  nfmo1  2066  euexex  2139  2moswapdc  2144  nfre1  2549  ceqsexg  2901  morex  2957  sbc6g  3023  intab  3914  nfopab1  4114  nfopab2  4115  copsexg  4289  copsex2t  4290  copsex2g  4291  eusv2nf  4504  onintonm  4566  mosubopt  4741  dmcoss  4949  imadif  5355  funimaexglem  5358  nfoprab1  5996  nfoprab2  5997  nfoprab3  5998  exmidfodomrlemr  7312  exmidfodomrlemrALT  7313  dfgrp3mlem  13463
  Copyright terms: Public domain W3C validator