ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralf0 Unicode version

Theorem ralf0 3567
Description: The quantification of a falsehood is vacuous when true. (Contributed by NM, 26-Nov-2005.)
Hypothesis
Ref Expression
ralf0.1  |-  -.  ph
Assertion
Ref Expression
ralf0  |-  ( A. x  e.  A  ph  <->  A  =  (/) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem ralf0
StepHypRef Expression
1 ralf0.1 . . . . 5  |-  -.  ph
2 con3 643 . . . . 5  |-  ( ( x  e.  A  ->  ph )  ->  ( -. 
ph  ->  -.  x  e.  A ) )
31, 2mpi 15 . . . 4  |-  ( ( x  e.  A  ->  ph )  ->  -.  x  e.  A )
43alimi 1479 . . 3  |-  ( A. x ( x  e.  A  ->  ph )  ->  A. x  -.  x  e.  A )
5 df-ral 2490 . . 3  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
6 eq0 3483 . . 3  |-  ( A  =  (/)  <->  A. x  -.  x  e.  A )
74, 5, 63imtr4i 201 . 2  |-  ( A. x  e.  A  ph  ->  A  =  (/) )
8 rzal 3562 . 2  |-  ( A  =  (/)  ->  A. x  e.  A  ph )
97, 8impbii 126 1  |-  ( A. x  e.  A  ph  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105   A.wal 1371    = wceq 1373    e. wcel 2177   A.wral 2485   (/)c0 3464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-v 2775  df-dif 3172  df-nul 3465
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator