ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmoimia Unicode version

Theorem rmoimia 2937
Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypothesis
Ref Expression
rmoimia.1  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
rmoimia  |-  ( E* x  e.  A  ps  ->  E* x  e.  A  ph )

Proof of Theorem rmoimia
StepHypRef Expression
1 rmoim 2936 . 2  |-  ( A. x  e.  A  ( ph  ->  ps )  -> 
( E* x  e.  A  ps  ->  E* x  e.  A  ph )
)
2 rmoimia.1 . 2  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
31, 2mprg 2532 1  |-  ( E* x  e.  A  ps  ->  E* x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2146   E*wrmo 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-ral 2458  df-rmo 2461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator