ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmoimi2 Unicode version

Theorem rmoimi2 2933
Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypothesis
Ref Expression
rmoimi2.1  |-  A. x
( ( x  e.  A  /\  ph )  ->  ( x  e.  B  /\  ps ) )
Assertion
Ref Expression
rmoimi2  |-  ( E* x  e.  B  ps  ->  E* x  e.  A  ph )

Proof of Theorem rmoimi2
StepHypRef Expression
1 rmoimi2.1 . . 3  |-  A. x
( ( x  e.  A  /\  ph )  ->  ( x  e.  B  /\  ps ) )
2 moim 2083 . . 3  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  B  /\  ps )
)  ->  ( E* x ( x  e.  B  /\  ps )  ->  E* x ( x  e.  A  /\  ph ) ) )
31, 2ax-mp 5 . 2  |-  ( E* x ( x  e.  B  /\  ps )  ->  E* x ( x  e.  A  /\  ph ) )
4 df-rmo 2456 . 2  |-  ( E* x  e.  B  ps  <->  E* x ( x  e.  B  /\  ps )
)
5 df-rmo 2456 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
63, 4, 53imtr4i 200 1  |-  ( E* x  e.  B  ps  ->  E* x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1346   E*wmo 2020    e. wcel 2141   E*wrmo 2451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-rmo 2456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator