ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmoim Unicode version

Theorem rmoim 2965
Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
rmoim  |-  ( A. x  e.  A  ( ph  ->  ps )  -> 
( E* x  e.  A  ps  ->  E* x  e.  A  ph )
)

Proof of Theorem rmoim
StepHypRef Expression
1 df-ral 2480 . . 3  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  A. x
( x  e.  A  ->  ( ph  ->  ps ) ) )
2 imdistan 444 . . . 4  |-  ( ( x  e.  A  -> 
( ph  ->  ps )
)  <->  ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
) )
32albii 1484 . . 3  |-  ( A. x ( x  e.  A  ->  ( ph  ->  ps ) )  <->  A. x
( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps ) ) )
41, 3bitri 184 . 2  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  A. x
( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps ) ) )
5 moim 2109 . . 3  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
)  ->  ( E* x ( x  e.  A  /\  ps )  ->  E* x ( x  e.  A  /\  ph ) ) )
6 df-rmo 2483 . . 3  |-  ( E* x  e.  A  ps  <->  E* x ( x  e.  A  /\  ps )
)
7 df-rmo 2483 . . 3  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
85, 6, 73imtr4g 205 . 2  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
)  ->  ( E* x  e.  A  ps  ->  E* x  e.  A  ph ) )
94, 8sylbi 121 1  |-  ( A. x  e.  A  ( ph  ->  ps )  -> 
( E* x  e.  A  ps  ->  E* x  e.  A  ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362   E*wmo 2046    e. wcel 2167   A.wral 2475   E*wrmo 2478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-ral 2480  df-rmo 2483
This theorem is referenced by:  rmoimia  2966  disjss2  4013  rinvmod  13439
  Copyright terms: Public domain W3C validator