ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbceq2a Unicode version

Theorem sbceq2a 2996
Description: Equality theorem for class substitution. Class version of sbequ12r 1783. (Contributed by NM, 4-Jan-2017.)
Assertion
Ref Expression
sbceq2a  |-  ( A  =  x  ->  ( [. A  /  x ]. ph  <->  ph ) )

Proof of Theorem sbceq2a
StepHypRef Expression
1 sbceq1a 2995 . . 3  |-  ( x  =  A  ->  ( ph 
<-> 
[. A  /  x ]. ph ) )
21eqcoms 2196 . 2  |-  ( A  =  x  ->  ( ph 
<-> 
[. A  /  x ]. ph ) )
32bicomd 141 1  |-  ( A  =  x  ->  ( [. A  /  x ]. ph  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   [.wsbc 2985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-sbc 2986
This theorem is referenced by:  uchoice  6190
  Copyright terms: Public domain W3C validator