ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbceq2a Unicode version

Theorem sbceq2a 2965
Description: Equality theorem for class substitution. Class version of sbequ12r 1765. (Contributed by NM, 4-Jan-2017.)
Assertion
Ref Expression
sbceq2a  |-  ( A  =  x  ->  ( [. A  /  x ]. ph  <->  ph ) )

Proof of Theorem sbceq2a
StepHypRef Expression
1 sbceq1a 2964 . . 3  |-  ( x  =  A  ->  ( ph 
<-> 
[. A  /  x ]. ph ) )
21eqcoms 2173 . 2  |-  ( A  =  x  ->  ( ph 
<-> 
[. A  /  x ]. ph ) )
32bicomd 140 1  |-  ( A  =  x  ->  ( [. A  /  x ]. ph  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348   [.wsbc 2955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-sbc 2956
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator