Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbceq2a | GIF version |
Description: Equality theorem for class substitution. Class version of sbequ12r 1760. (Contributed by NM, 4-Jan-2017.) |
Ref | Expression |
---|---|
sbceq2a | ⊢ (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1a 2960 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | 1 | eqcoms 2168 | . 2 ⊢ (𝐴 = 𝑥 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
3 | 2 | bicomd 140 | 1 ⊢ (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 [wsbc 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-sbc 2952 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |