ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbceq2a GIF version

Theorem sbceq2a 3000
Description: Equality theorem for class substitution. Class version of sbequ12r 1786. (Contributed by NM, 4-Jan-2017.)
Assertion
Ref Expression
sbceq2a (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑𝜑))

Proof of Theorem sbceq2a
StepHypRef Expression
1 sbceq1a 2999 . . 3 (𝑥 = 𝐴 → (𝜑[𝐴 / 𝑥]𝜑))
21eqcoms 2199 . 2 (𝐴 = 𝑥 → (𝜑[𝐴 / 𝑥]𝜑))
32bicomd 141 1 (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  [wsbc 2989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-sbc 2990
This theorem is referenced by:  uchoice  6195
  Copyright terms: Public domain W3C validator