Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbceq2a GIF version

Theorem sbceq2a 2919
 Description: Equality theorem for class substitution. Class version of sbequ12r 1745. (Contributed by NM, 4-Jan-2017.)
Assertion
Ref Expression
sbceq2a (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑𝜑))

Proof of Theorem sbceq2a
StepHypRef Expression
1 sbceq1a 2918 . . 3 (𝑥 = 𝐴 → (𝜑[𝐴 / 𝑥]𝜑))
21eqcoms 2142 . 2 (𝐴 = 𝑥 → (𝜑[𝐴 / 𝑥]𝜑))
32bicomd 140 1 (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑𝜑))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104   = wceq 1331  [wsbc 2909 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-sbc 2910 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator