Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbceq2a | GIF version |
Description: Equality theorem for class substitution. Class version of sbequ12r 1765. (Contributed by NM, 4-Jan-2017.) |
Ref | Expression |
---|---|
sbceq2a | ⊢ (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1a 2964 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | 1 | eqcoms 2173 | . 2 ⊢ (𝐴 = 𝑥 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
3 | 2 | bicomd 140 | 1 ⊢ (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 [wsbc 2955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-sbc 2956 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |