![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqcoms | Unicode version |
Description: Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqcoms.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqcoms |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2195 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqcoms.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylbi 121 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: gencbvex 2806 gencbval 2808 sbceq2a 2996 eqimss2 3234 uneqdifeqim 3532 tppreq3 3721 copsex2t 4274 copsex2g 4275 ordsoexmid 4594 0elsucexmid 4597 ordpwsucexmid 4602 cnveqb 5121 cnveq0 5122 relcoi1 5197 funtpg 5305 f0rn0 5448 fimadmfo 5485 f1ocnvfv 5822 f1ocnvfvb 5823 cbvfo 5828 cbvexfo 5829 brabvv 5964 ov6g 6056 ectocld 6655 ecoptocl 6676 phplem3 6910 f1dmvrnfibi 7003 f1vrnfibi 7004 updjud 7141 pr2ne 7252 nn0ind-raph 9434 nn01to3 9682 modqmuladd 10437 modqmuladdnn0 10439 fihashf1rn 10859 hashfzp1 10895 rennim 11146 xrmaxiflemcom 11392 m1expe 12040 m1expo 12041 m1exp1 12042 nn0o1gt2 12046 flodddiv4 12075 cncongr1 12241 m1dvdsndvds 12386 mgmsscl 12944 mndinvmod 13026 ringinvnzdiv 13546 txcn 14443 relogbcxpbap 15097 logbgcd1irr 15099 logbgcd1irraplemexp 15100 zabsle1 15115 2lgsoddprmlem3 15199 bj-inf2vnlem2 15463 |
Copyright terms: Public domain | W3C validator |