![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqcoms | Unicode version |
Description: Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqcoms.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqcoms |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2090 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqcoms.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylbi 119 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-cleq 2081 |
This theorem is referenced by: gencbvex 2665 gencbval 2667 sbceq2a 2850 eqimss2 3079 uneqdifeqim 3368 tppreq3 3545 copsex2t 4072 copsex2g 4073 ordsoexmid 4378 0elsucexmid 4381 ordpwsucexmid 4386 cnveqb 4886 cnveq0 4887 relcoi1 4962 funtpg 5065 f0rn0 5205 f1ocnvfv 5558 f1ocnvfvb 5559 cbvfo 5564 cbvexfo 5565 brabvv 5695 ov6g 5782 ectocld 6356 ecoptocl 6377 phplem3 6568 f1dmvrnfibi 6651 f1vrnfibi 6652 updjud 6771 pr2ne 6818 nn0ind-raph 8861 nn01to3 9100 modqmuladd 9769 modqmuladdnn0 9771 fihashf1rn 10193 hashfzp1 10228 rennim 10431 m1expe 11173 m1expo 11174 m1exp1 11175 nn0o1gt2 11179 flodddiv4 11208 cncongr1 11359 bj-inf2vnlem2 11821 |
Copyright terms: Public domain | W3C validator |