| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqcoms | Unicode version | ||
| Description: Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqcoms.1 |
|
| Ref | Expression |
|---|---|
| eqcoms |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2206 |
. 2
| |
| 2 | eqcoms.1 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: gencbvex 2818 gencbval 2820 sbceq2a 3008 eqimss2 3247 uneqdifeqim 3545 tppreq3 3735 copsex2t 4288 copsex2g 4289 ordsoexmid 4609 0elsucexmid 4612 ordpwsucexmid 4617 cnveqb 5137 cnveq0 5138 relcoi1 5213 funtpg 5324 f0rn0 5469 fimadmfo 5506 f1ocnvfv 5847 f1ocnvfvb 5848 cbvfo 5853 cbvexfo 5854 brabvv 5990 ov6g 6083 ectocld 6687 ecoptocl 6708 phplem3 6950 f1dmvrnfibi 7045 f1vrnfibi 7046 updjud 7183 pr2ne 7299 nn0ind-raph 9489 nn01to3 9737 modqmuladd 10509 modqmuladdnn0 10511 fihashf1rn 10931 hashfzp1 10967 lswlgt0cl 11043 rennim 11255 xrmaxiflemcom 11502 m1expe 12152 m1expo 12153 m1exp1 12154 nn0o1gt2 12158 flodddiv4 12189 cncongr1 12367 m1dvdsndvds 12513 mgmsscl 13135 mndinvmod 13219 ringinvnzdiv 13754 txcn 14689 relogbcxpbap 15379 logbgcd1irr 15381 logbgcd1irraplemexp 15382 fsumdvdsmul 15405 zabsle1 15418 2lgslem1c 15509 2lgsoddprmlem3 15530 bj-inf2vnlem2 15840 |
| Copyright terms: Public domain | W3C validator |