| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqcoms | Unicode version | ||
| Description: Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqcoms.1 |
|
| Ref | Expression |
|---|---|
| eqcoms |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2198 |
. 2
| |
| 2 | eqcoms.1 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: gencbvex 2810 gencbval 2812 sbceq2a 3000 eqimss2 3239 uneqdifeqim 3537 tppreq3 3726 copsex2t 4279 copsex2g 4280 ordsoexmid 4599 0elsucexmid 4602 ordpwsucexmid 4607 cnveqb 5126 cnveq0 5127 relcoi1 5202 funtpg 5310 f0rn0 5455 fimadmfo 5492 f1ocnvfv 5829 f1ocnvfvb 5830 cbvfo 5835 cbvexfo 5836 brabvv 5972 ov6g 6065 ectocld 6669 ecoptocl 6690 phplem3 6924 f1dmvrnfibi 7019 f1vrnfibi 7020 updjud 7157 pr2ne 7271 nn0ind-raph 9460 nn01to3 9708 modqmuladd 10475 modqmuladdnn0 10477 fihashf1rn 10897 hashfzp1 10933 rennim 11184 xrmaxiflemcom 11431 m1expe 12081 m1expo 12082 m1exp1 12083 nn0o1gt2 12087 flodddiv4 12118 cncongr1 12296 m1dvdsndvds 12442 mgmsscl 13063 mndinvmod 13147 ringinvnzdiv 13682 txcn 14595 relogbcxpbap 15285 logbgcd1irr 15287 logbgcd1irraplemexp 15288 fsumdvdsmul 15311 zabsle1 15324 2lgslem1c 15415 2lgsoddprmlem3 15436 bj-inf2vnlem2 15701 |
| Copyright terms: Public domain | W3C validator |