Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqcoms | Unicode version |
Description: Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqcoms.1 |
Ref | Expression |
---|---|
eqcoms |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2167 | . 2 | |
2 | eqcoms.1 | . 2 | |
3 | 1, 2 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: gencbvex 2771 gencbval 2773 sbceq2a 2960 eqimss2 3196 uneqdifeqim 3493 tppreq3 3678 copsex2t 4222 copsex2g 4223 ordsoexmid 4538 0elsucexmid 4541 ordpwsucexmid 4546 cnveqb 5058 cnveq0 5059 relcoi1 5134 funtpg 5238 f0rn0 5381 f1ocnvfv 5746 f1ocnvfvb 5747 cbvfo 5752 cbvexfo 5753 brabvv 5884 ov6g 5975 ectocld 6563 ecoptocl 6584 phplem3 6816 f1dmvrnfibi 6905 f1vrnfibi 6906 updjud 7043 pr2ne 7144 nn0ind-raph 9304 nn01to3 9551 modqmuladd 10297 modqmuladdnn0 10299 fihashf1rn 10698 hashfzp1 10733 rennim 10940 xrmaxiflemcom 11186 m1expe 11832 m1expo 11833 m1exp1 11834 nn0o1gt2 11838 flodddiv4 11867 cncongr1 12031 m1dvdsndvds 12176 txcn 12875 relogbcxpbap 13483 logbgcd1irr 13485 logbgcd1irraplemexp 13486 zabsle1 13500 bj-inf2vnlem2 13813 |
Copyright terms: Public domain | W3C validator |