| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqcoms | Unicode version | ||
| Description: Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqcoms.1 |
|
| Ref | Expression |
|---|---|
| eqcoms |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2206 |
. 2
| |
| 2 | eqcoms.1 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: gencbvex 2818 gencbval 2820 sbceq2a 3008 eqimss2 3247 uneqdifeqim 3545 tppreq3 3735 copsex2t 4288 copsex2g 4289 ordsoexmid 4608 0elsucexmid 4611 ordpwsucexmid 4616 cnveqb 5135 cnveq0 5136 relcoi1 5211 funtpg 5319 f0rn0 5464 fimadmfo 5501 f1ocnvfv 5838 f1ocnvfvb 5839 cbvfo 5844 cbvexfo 5845 brabvv 5981 ov6g 6074 ectocld 6678 ecoptocl 6699 phplem3 6933 f1dmvrnfibi 7028 f1vrnfibi 7029 updjud 7166 pr2ne 7282 nn0ind-raph 9472 nn01to3 9720 modqmuladd 10492 modqmuladdnn0 10494 fihashf1rn 10914 hashfzp1 10950 lswlgt0cl 11020 rennim 11232 xrmaxiflemcom 11479 m1expe 12129 m1expo 12130 m1exp1 12131 nn0o1gt2 12135 flodddiv4 12166 cncongr1 12344 m1dvdsndvds 12490 mgmsscl 13111 mndinvmod 13195 ringinvnzdiv 13730 txcn 14665 relogbcxpbap 15355 logbgcd1irr 15357 logbgcd1irraplemexp 15358 fsumdvdsmul 15381 zabsle1 15394 2lgslem1c 15485 2lgsoddprmlem3 15506 bj-inf2vnlem2 15771 |
| Copyright terms: Public domain | W3C validator |