| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqcoms | Unicode version | ||
| Description: Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqcoms.1 |
|
| Ref | Expression |
|---|---|
| eqcoms |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2198 |
. 2
| |
| 2 | eqcoms.1 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: gencbvex 2810 gencbval 2812 sbceq2a 3000 eqimss2 3238 uneqdifeqim 3536 tppreq3 3725 copsex2t 4278 copsex2g 4279 ordsoexmid 4598 0elsucexmid 4601 ordpwsucexmid 4606 cnveqb 5125 cnveq0 5126 relcoi1 5201 funtpg 5309 f0rn0 5452 fimadmfo 5489 f1ocnvfv 5826 f1ocnvfvb 5827 cbvfo 5832 cbvexfo 5833 brabvv 5968 ov6g 6061 ectocld 6660 ecoptocl 6681 phplem3 6915 f1dmvrnfibi 7010 f1vrnfibi 7011 updjud 7148 pr2ne 7259 nn0ind-raph 9443 nn01to3 9691 modqmuladd 10458 modqmuladdnn0 10460 fihashf1rn 10880 hashfzp1 10916 rennim 11167 xrmaxiflemcom 11414 m1expe 12064 m1expo 12065 m1exp1 12066 nn0o1gt2 12070 flodddiv4 12101 cncongr1 12271 m1dvdsndvds 12417 mgmsscl 13004 mndinvmod 13086 ringinvnzdiv 13606 txcn 14511 relogbcxpbap 15201 logbgcd1irr 15203 logbgcd1irraplemexp 15204 fsumdvdsmul 15227 zabsle1 15240 2lgslem1c 15331 2lgsoddprmlem3 15352 bj-inf2vnlem2 15617 |
| Copyright terms: Public domain | W3C validator |