Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqcoms | Unicode version |
Description: Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqcoms.1 |
Ref | Expression |
---|---|
eqcoms |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2159 | . 2 | |
2 | eqcoms.1 | . 2 | |
3 | 1, 2 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-cleq 2150 |
This theorem is referenced by: gencbvex 2758 gencbval 2760 sbceq2a 2947 eqimss2 3183 uneqdifeqim 3479 tppreq3 3662 copsex2t 4204 copsex2g 4205 ordsoexmid 4519 0elsucexmid 4522 ordpwsucexmid 4527 cnveqb 5038 cnveq0 5039 relcoi1 5114 funtpg 5218 f0rn0 5361 f1ocnvfv 5724 f1ocnvfvb 5725 cbvfo 5730 cbvexfo 5731 brabvv 5861 ov6g 5952 ectocld 6539 ecoptocl 6560 phplem3 6792 f1dmvrnfibi 6881 f1vrnfibi 6882 updjud 7016 pr2ne 7110 nn0ind-raph 9264 nn01to3 9508 modqmuladd 10247 modqmuladdnn0 10249 fihashf1rn 10645 hashfzp1 10680 rennim 10884 xrmaxiflemcom 11128 m1expe 11771 m1expo 11772 m1exp1 11773 nn0o1gt2 11777 flodddiv4 11806 cncongr1 11960 txcn 12635 relogbcxpbap 13242 logbgcd1irr 13244 logbgcd1irraplemexp 13245 bj-inf2vnlem2 13505 |
Copyright terms: Public domain | W3C validator |