![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqcoms | Unicode version |
Description: Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqcoms.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqcoms |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2179 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqcoms.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylbi 121 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 |
This theorem is referenced by: gencbvex 2785 gencbval 2787 sbceq2a 2975 eqimss2 3212 uneqdifeqim 3510 tppreq3 3697 copsex2t 4247 copsex2g 4248 ordsoexmid 4563 0elsucexmid 4566 ordpwsucexmid 4571 cnveqb 5086 cnveq0 5087 relcoi1 5162 funtpg 5269 f0rn0 5412 f1ocnvfv 5782 f1ocnvfvb 5783 cbvfo 5788 cbvexfo 5789 brabvv 5923 ov6g 6014 ectocld 6603 ecoptocl 6624 phplem3 6856 f1dmvrnfibi 6945 f1vrnfibi 6946 updjud 7083 pr2ne 7193 nn0ind-raph 9372 nn01to3 9619 modqmuladd 10368 modqmuladdnn0 10370 fihashf1rn 10770 hashfzp1 10806 rennim 11013 xrmaxiflemcom 11259 m1expe 11906 m1expo 11907 m1exp1 11908 nn0o1gt2 11912 flodddiv4 11941 cncongr1 12105 m1dvdsndvds 12250 mgmsscl 12785 mndinvmod 12851 ringinvnzdiv 13232 txcn 13814 relogbcxpbap 14422 logbgcd1irr 14424 logbgcd1irraplemexp 14425 zabsle1 14439 2lgsoddprmlem3 14498 bj-inf2vnlem2 14762 |
Copyright terms: Public domain | W3C validator |