| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqcoms | Unicode version | ||
| Description: Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqcoms.1 |
|
| Ref | Expression |
|---|---|
| eqcoms |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2208 |
. 2
| |
| 2 | eqcoms.1 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: gencbvex 2821 gencbval 2823 sbceq2a 3013 eqimss2 3252 uneqdifeqim 3550 tppreq3 3741 copsex2t 4297 copsex2g 4298 ordsoexmid 4618 0elsucexmid 4621 ordpwsucexmid 4626 cnveqb 5147 cnveq0 5148 relcoi1 5223 funtpg 5334 f0rn0 5482 fimadmfo 5519 f1ocnvfv 5861 f1ocnvfvb 5862 cbvfo 5867 cbvexfo 5868 brabvv 6004 ov6g 6097 ectocld 6701 ecoptocl 6722 phplem3 6966 f1dmvrnfibi 7061 f1vrnfibi 7062 updjud 7199 pr2ne 7315 nn0ind-raph 9510 nn01to3 9758 modqmuladd 10533 modqmuladdnn0 10535 fihashf1rn 10955 hashfzp1 10991 lswlgt0cl 11068 wrd2ind 11199 rennim 11388 xrmaxiflemcom 11635 m1expe 12285 m1expo 12286 m1exp1 12287 nn0o1gt2 12291 flodddiv4 12322 cncongr1 12500 m1dvdsndvds 12646 mgmsscl 13268 mndinvmod 13352 ringinvnzdiv 13887 txcn 14822 relogbcxpbap 15512 logbgcd1irr 15514 logbgcd1irraplemexp 15515 fsumdvdsmul 15538 zabsle1 15551 2lgslem1c 15642 2lgsoddprmlem3 15663 bj-inf2vnlem2 16045 |
| Copyright terms: Public domain | W3C validator |