Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqcoms | Unicode version |
Description: Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqcoms.1 |
Ref | Expression |
---|---|
eqcoms |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2177 | . 2 | |
2 | eqcoms.1 | . 2 | |
3 | 1, 2 | sylbi 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-cleq 2168 |
This theorem is referenced by: gencbvex 2781 gencbval 2783 sbceq2a 2971 eqimss2 3208 uneqdifeqim 3506 tppreq3 3692 copsex2t 4239 copsex2g 4240 ordsoexmid 4555 0elsucexmid 4558 ordpwsucexmid 4563 cnveqb 5076 cnveq0 5077 relcoi1 5152 funtpg 5259 f0rn0 5402 f1ocnvfv 5770 f1ocnvfvb 5771 cbvfo 5776 cbvexfo 5777 brabvv 5911 ov6g 6002 ectocld 6591 ecoptocl 6612 phplem3 6844 f1dmvrnfibi 6933 f1vrnfibi 6934 updjud 7071 pr2ne 7181 nn0ind-raph 9343 nn01to3 9590 modqmuladd 10336 modqmuladdnn0 10338 fihashf1rn 10736 hashfzp1 10772 rennim 10979 xrmaxiflemcom 11225 m1expe 11871 m1expo 11872 m1exp1 11873 nn0o1gt2 11877 flodddiv4 11906 cncongr1 12070 m1dvdsndvds 12215 mgmsscl 12646 mndinvmod 12709 ringinvnzdiv 13023 txcn 13346 relogbcxpbap 13954 logbgcd1irr 13956 logbgcd1irraplemexp 13957 zabsle1 13971 bj-inf2vnlem2 14283 |
Copyright terms: Public domain | W3C validator |