| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbceq1a | Unicode version | ||
| Description: Equality theorem for class substitution. Class version of sbequ12 1794. (Contributed by NM, 26-Sep-2003.) |
| Ref | Expression |
|---|---|
| sbceq1a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbid 1797 |
. 2
| |
| 2 | dfsbcq2 3001 |
. 2
| |
| 3 | 1, 2 | bitr3id 194 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-sbc 2999 |
| This theorem is referenced by: sbceq2a 3009 elrabsf 3037 cbvralcsf 3156 cbvrexcsf 3157 euotd 4299 omsinds 4670 elfvmptrab1 5674 ralrnmpt 5722 rexrnmpt 5723 riotass2 5926 riotass 5927 elovmporab 6146 elovmporab1w 6147 uchoice 6223 sbcopeq1a 6273 mpoxopoveq 6326 findcard2 6986 findcard2s 6987 ac6sfi 6995 opabfi 7035 dcfi 7083 indpi 7455 nn0ind-raph 9490 indstr 9714 fzrevral 10227 exfzdc 10369 zsupcllemstep 10372 infssuzex 10376 uzsinds 10589 prmind2 12442 gropd 15644 grstructd2dom 15645 bj-intabssel 15725 bj-bdfindes 15885 bj-findes 15917 |
| Copyright terms: Public domain | W3C validator |