| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbceq1a | Unicode version | ||
| Description: Equality theorem for class substitution. Class version of sbequ12 1817. (Contributed by NM, 26-Sep-2003.) |
| Ref | Expression |
|---|---|
| sbceq1a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbid 1820 |
. 2
| |
| 2 | dfsbcq2 3031 |
. 2
| |
| 3 | 1, 2 | bitr3id 194 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-sbc 3029 |
| This theorem is referenced by: sbceq2a 3039 elrabsf 3067 cbvralcsf 3187 cbvrexcsf 3188 euotd 4341 omsinds 4714 elfvmptrab1 5729 ralrnmpt 5777 rexrnmpt 5778 riotass2 5983 riotass 5984 elovmporab 6205 elovmporab1w 6206 uchoice 6283 sbcopeq1a 6333 mpoxopoveq 6386 findcard2 7051 findcard2s 7052 ac6sfi 7060 opabfi 7100 dcfi 7148 indpi 7529 nn0ind-raph 9564 indstr 9788 fzrevral 10301 exfzdc 10446 zsupcllemstep 10449 infssuzex 10453 uzsinds 10666 wrdind 11254 wrd2ind 11255 prmind2 12642 gropd 15848 grstructd2dom 15849 bj-intabssel 16153 bj-bdfindes 16312 bj-findes 16344 |
| Copyright terms: Public domain | W3C validator |