| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbceq1a | Unicode version | ||
| Description: Equality theorem for class substitution. Class version of sbequ12 1794. (Contributed by NM, 26-Sep-2003.) |
| Ref | Expression |
|---|---|
| sbceq1a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbid 1797 |
. 2
| |
| 2 | dfsbcq2 3001 |
. 2
| |
| 3 | 1, 2 | bitr3id 194 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-sbc 2999 |
| This theorem is referenced by: sbceq2a 3009 elrabsf 3037 cbvralcsf 3156 cbvrexcsf 3157 euotd 4300 omsinds 4671 elfvmptrab1 5676 ralrnmpt 5724 rexrnmpt 5725 riotass2 5928 riotass 5929 elovmporab 6148 elovmporab1w 6149 uchoice 6225 sbcopeq1a 6275 mpoxopoveq 6328 findcard2 6988 findcard2s 6989 ac6sfi 6997 opabfi 7037 dcfi 7085 indpi 7457 nn0ind-raph 9492 indstr 9716 fzrevral 10229 exfzdc 10371 zsupcllemstep 10374 infssuzex 10378 uzsinds 10591 prmind2 12475 gropd 15677 grstructd2dom 15678 bj-intabssel 15762 bj-bdfindes 15922 bj-findes 15954 |
| Copyright terms: Public domain | W3C validator |