| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbceq1a | Unicode version | ||
| Description: Equality theorem for class substitution. Class version of sbequ12 1785. (Contributed by NM, 26-Sep-2003.) |
| Ref | Expression |
|---|---|
| sbceq1a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbid 1788 |
. 2
| |
| 2 | dfsbcq2 2992 |
. 2
| |
| 3 | 1, 2 | bitr3id 194 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-sbc 2990 |
| This theorem is referenced by: sbceq2a 3000 elrabsf 3028 cbvralcsf 3147 cbvrexcsf 3148 euotd 4287 omsinds 4658 elfvmptrab1 5656 ralrnmpt 5704 rexrnmpt 5705 riotass2 5904 riotass 5905 elovmporab 6123 elovmporab1w 6124 uchoice 6195 sbcopeq1a 6245 mpoxopoveq 6298 findcard2 6950 findcard2s 6951 ac6sfi 6959 opabfi 6999 dcfi 7047 indpi 7409 nn0ind-raph 9443 indstr 9667 fzrevral 10180 exfzdc 10316 zsupcllemstep 10319 infssuzex 10323 uzsinds 10536 prmind2 12288 bj-intabssel 15435 bj-bdfindes 15595 bj-findes 15627 |
| Copyright terms: Public domain | W3C validator |