Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbceq1a | Unicode version |
Description: Equality theorem for class substitution. Class version of sbequ12 1748. (Contributed by NM, 26-Sep-2003.) |
Ref | Expression |
---|---|
sbceq1a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbid 1751 | . 2 | |
2 | dfsbcq2 2936 | . 2 | |
3 | 1, 2 | bitr3id 193 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1332 wsb 1739 wsbc 2933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-sbc 2934 |
This theorem is referenced by: sbceq2a 2943 elrabsf 2971 cbvralcsf 3089 cbvrexcsf 3090 euotd 4209 omsinds 4575 elfvmptrab1 5555 ralrnmpt 5602 rexrnmpt 5603 riotass2 5796 riotass 5797 sbcopeq1a 6125 mpoxopoveq 6177 findcard2 6823 findcard2s 6824 ac6sfi 6832 indpi 7241 nn0ind-raph 9260 indstr 9483 fzrevral 9985 exfzdc 10117 uzsinds 10319 zsupcllemstep 11805 infssuzex 11809 prmind2 11968 bj-intabssel 13301 bj-bdfindes 13462 bj-findes 13494 |
Copyright terms: Public domain | W3C validator |