| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbceq1a | Unicode version | ||
| Description: Equality theorem for class substitution. Class version of sbequ12 1795. (Contributed by NM, 26-Sep-2003.) |
| Ref | Expression |
|---|---|
| sbceq1a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbid 1798 |
. 2
| |
| 2 | dfsbcq2 3008 |
. 2
| |
| 3 | 1, 2 | bitr3id 194 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-sbc 3006 |
| This theorem is referenced by: sbceq2a 3016 elrabsf 3044 cbvralcsf 3164 cbvrexcsf 3165 euotd 4317 omsinds 4688 elfvmptrab1 5697 ralrnmpt 5745 rexrnmpt 5746 riotass2 5949 riotass 5950 elovmporab 6169 elovmporab1w 6170 uchoice 6246 sbcopeq1a 6296 mpoxopoveq 6349 findcard2 7012 findcard2s 7013 ac6sfi 7021 opabfi 7061 dcfi 7109 indpi 7490 nn0ind-raph 9525 indstr 9749 fzrevral 10262 exfzdc 10406 zsupcllemstep 10409 infssuzex 10413 uzsinds 10626 wrdind 11213 wrd2ind 11214 prmind2 12557 gropd 15761 grstructd2dom 15762 bj-intabssel 15925 bj-bdfindes 16084 bj-findes 16116 |
| Copyright terms: Public domain | W3C validator |