![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbceq1a | Unicode version |
Description: Equality theorem for class substitution. Class version of sbequ12 1782. (Contributed by NM, 26-Sep-2003.) |
Ref | Expression |
---|---|
sbceq1a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbid 1785 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | dfsbcq2 2989 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitr3id 194 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-sbc 2987 |
This theorem is referenced by: sbceq2a 2997 elrabsf 3025 cbvralcsf 3144 cbvrexcsf 3145 euotd 4284 omsinds 4655 elfvmptrab1 5653 ralrnmpt 5701 rexrnmpt 5702 riotass2 5901 riotass 5902 elovmporab 6120 elovmporab1w 6121 uchoice 6192 sbcopeq1a 6242 mpoxopoveq 6295 findcard2 6947 findcard2s 6948 ac6sfi 6956 opabfi 6994 dcfi 7042 indpi 7404 nn0ind-raph 9437 indstr 9661 fzrevral 10174 exfzdc 10310 uzsinds 10518 zsupcllemstep 12085 infssuzex 12089 prmind2 12261 bj-intabssel 15351 bj-bdfindes 15511 bj-findes 15543 |
Copyright terms: Public domain | W3C validator |