![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbceq1a | Unicode version |
Description: Equality theorem for class substitution. Class version of sbequ12 1782. (Contributed by NM, 26-Sep-2003.) |
Ref | Expression |
---|---|
sbceq1a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbid 1785 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | dfsbcq2 2988 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitr3id 194 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-sbc 2986 |
This theorem is referenced by: sbceq2a 2996 elrabsf 3024 cbvralcsf 3143 cbvrexcsf 3144 euotd 4283 omsinds 4654 elfvmptrab1 5652 ralrnmpt 5700 rexrnmpt 5701 riotass2 5900 riotass 5901 elovmporab 6118 elovmporab1w 6119 uchoice 6190 sbcopeq1a 6240 mpoxopoveq 6293 findcard2 6945 findcard2s 6946 ac6sfi 6954 opabfi 6992 dcfi 7040 indpi 7402 nn0ind-raph 9434 indstr 9658 fzrevral 10171 exfzdc 10307 uzsinds 10515 zsupcllemstep 12082 infssuzex 12086 prmind2 12258 bj-intabssel 15281 bj-bdfindes 15441 bj-findes 15473 |
Copyright terms: Public domain | W3C validator |