| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spsbc | Unicode version | ||
| Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1789 and rspsbc 3072. (Contributed by NM, 16-Jan-2004.) |
| Ref | Expression |
|---|---|
| spsbc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stdpc4 1789 |
. . . 4
| |
| 2 | sbsbc 2993 |
. . . 4
| |
| 3 | 1, 2 | sylib 122 |
. . 3
|
| 4 | dfsbcq 2991 |
. . 3
| |
| 5 | 3, 4 | imbitrid 154 |
. 2
|
| 6 | 5 | vtocleg 2835 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 df-sbc 2990 |
| This theorem is referenced by: spsbcd 3002 sbcth 3003 sbcthdv 3004 sbceqal 3045 sbcimdv 3055 csbiebt 3124 csbexga 4161 |
| Copyright terms: Public domain | W3C validator |