| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spsbc | Unicode version | ||
| Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1799 and rspsbc 3085. (Contributed by NM, 16-Jan-2004.) |
| Ref | Expression |
|---|---|
| spsbc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stdpc4 1799 |
. . . 4
| |
| 2 | sbsbc 3006 |
. . . 4
| |
| 3 | 1, 2 | sylib 122 |
. . 3
|
| 4 | dfsbcq 3004 |
. . 3
| |
| 5 | 3, 4 | imbitrid 154 |
. 2
|
| 6 | 5 | vtocleg 2848 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-v 2775 df-sbc 3003 |
| This theorem is referenced by: spsbcd 3015 sbcth 3016 sbcthdv 3017 sbceqal 3058 sbcimdv 3068 csbiebt 3137 csbexga 4183 |
| Copyright terms: Public domain | W3C validator |