Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spsbc | Unicode version |
Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1768 and rspsbc 3037. (Contributed by NM, 16-Jan-2004.) |
Ref | Expression |
---|---|
spsbc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc4 1768 | . . . 4 | |
2 | sbsbc 2959 | . . . 4 | |
3 | 1, 2 | sylib 121 | . . 3 |
4 | dfsbcq 2957 | . . 3 | |
5 | 3, 4 | syl5ib 153 | . 2 |
6 | 5 | vtocleg 2801 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1346 wceq 1348 wsb 1755 wcel 2141 wsbc 2955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 df-sbc 2956 |
This theorem is referenced by: spsbcd 2967 sbcth 2968 sbcthdv 2969 sbceqal 3010 sbcimdv 3020 csbiebt 3088 csbexga 4117 |
Copyright terms: Public domain | W3C validator |