ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spsbc Unicode version

Theorem spsbc 2966
Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1768 and rspsbc 3037. (Contributed by NM, 16-Jan-2004.)
Assertion
Ref Expression
spsbc  |-  ( A  e.  V  ->  ( A. x ph  ->  [. A  /  x ]. ph )
)

Proof of Theorem spsbc
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 stdpc4 1768 . . . 4  |-  ( A. x ph  ->  [ y  /  x ] ph )
2 sbsbc 2959 . . . 4  |-  ( [ y  /  x ] ph 
<-> 
[. y  /  x ]. ph )
31, 2sylib 121 . . 3  |-  ( A. x ph  ->  [. y  /  x ]. ph )
4 dfsbcq 2957 . . 3  |-  ( y  =  A  ->  ( [. y  /  x ]. ph  <->  [. A  /  x ]. ph ) )
53, 4syl5ib 153 . 2  |-  ( y  =  A  ->  ( A. x ph  ->  [. A  /  x ]. ph )
)
65vtocleg 2801 1  |-  ( A  e.  V  ->  ( A. x ph  ->  [. A  /  x ]. ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346    = wceq 1348   [wsb 1755    e. wcel 2141   [.wsbc 2955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732  df-sbc 2956
This theorem is referenced by:  spsbcd  2967  sbcth  2968  sbcthdv  2969  sbceqal  3010  sbcimdv  3020  csbiebt  3088  csbexga  4117
  Copyright terms: Public domain W3C validator