Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spsbc | Unicode version |
Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1763 and rspsbc 3033. (Contributed by NM, 16-Jan-2004.) |
Ref | Expression |
---|---|
spsbc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc4 1763 | . . . 4 | |
2 | sbsbc 2955 | . . . 4 | |
3 | 1, 2 | sylib 121 | . . 3 |
4 | dfsbcq 2953 | . . 3 | |
5 | 3, 4 | syl5ib 153 | . 2 |
6 | 5 | vtocleg 2797 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1341 wceq 1343 wsb 1750 wcel 2136 wsbc 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 df-sbc 2952 |
This theorem is referenced by: spsbcd 2963 sbcth 2964 sbcthdv 2965 sbceqal 3006 sbcimdv 3016 csbiebt 3084 csbexga 4110 |
Copyright terms: Public domain | W3C validator |