Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbequ12r | Unicode version |
Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
sbequ12r |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12 1769 | . . 3 | |
2 | 1 | bicomd 141 | . 2 |
3 | 2 | equcoms 1706 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wsb 1760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-4 1508 ax-17 1524 ax-i9 1528 |
This theorem depends on definitions: df-bi 117 df-sb 1761 |
This theorem is referenced by: abbi 2289 findes 4596 opeliunxp 4675 isarep1 5294 bezoutlemmain 11966 |
Copyright terms: Public domain | W3C validator |