ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbequ12r Unicode version

Theorem sbequ12r 1818
Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
Assertion
Ref Expression
sbequ12r  |-  ( x  =  y  ->  ( [ x  /  y ] ph  <->  ph ) )

Proof of Theorem sbequ12r
StepHypRef Expression
1 sbequ12 1817 . . 3  |-  ( y  =  x  ->  ( ph 
<->  [ x  /  y ] ph ) )
21bicomd 141 . 2  |-  ( y  =  x  ->  ( [ x  /  y ] ph  <->  ph ) )
32equcoms 1754 1  |-  ( x  =  y  ->  ( [ x  /  y ] ph  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576
This theorem depends on definitions:  df-bi 117  df-sb 1809
This theorem is referenced by:  abbi  2343  findes  4694  opeliunxp  4773  isarep1  5406  bezoutlemmain  12514
  Copyright terms: Public domain W3C validator