Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbequ12r | Unicode version |
Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
sbequ12r |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12 1764 | . . 3 | |
2 | 1 | bicomd 140 | . 2 |
3 | 2 | equcoms 1701 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 |
This theorem depends on definitions: df-bi 116 df-sb 1756 |
This theorem is referenced by: abbi 2284 findes 4587 opeliunxp 4666 isarep1 5284 bezoutlemmain 11953 |
Copyright terms: Public domain | W3C validator |